首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of the equatorialK-coronal radiance at 2.5R from Sun center and its variation with time, on a daily basis, during the Skylab mission (May 1973–February 1974) are presented. The observations are subdivided into three periods, each characterized by a different variation of the radiance pattern with time. During the initial period, encompassing two solar rotations, there are several data gaps, but the radiance pattern shows a more or less smooth variation with time; however, during the second period (also about two solar rotations duration) the radiance signal is neither persistent on the short term nor recurrent from one limb passage to the next. Finally, during the last period, of five solar rotations duration, the radiance signal exhibits an orderly periodic behavior of increasing intensity. These results are interpreted as indicating a general simplification of the coronal magnetic field through the mission and, in comparison with harmonic analysis of the surface magnetic field (Levine, 1977), as indicating a rapid response of equatorial outer coronal structures to abrupt changes in the global surface field structure.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
High resolution KPNO magnetograph measurements of the line-of-sight component of the photospheric magnetic field over the entire dynamic range from 0 to 4000 gauss are used as the basic data for a new analysis of the photospheric and coronal magnetic field distributions. The daily magnetograph measurements collected over a solar rotation are averaged onto a 180 × 360 synoptic grid of equal-area elements. With the assumption that there are no electric currents above the photospheric level of measurement, a unique solution is determined for the global solar magnetic field. Because the solution is in terms of an expansion in spherical harmonics to principal index n = 90, the global photospheric magnetic energy distribution can be analyzed in terms of contributions of different scale-size and geometric pattern. This latter procedure is of value (1) in guiding solar dynamo theories, (2) in monitoring the persistence of the photospheric field pattern and its components, (3) in comparing synoptic magnetic data of different observatories, and (4) in estimating data quality. Different types of maps for the coronal magnetic field are constructed (1) to show the strong field at different resolutions, (2) to trace the field lines which open into interplanetary space and to locate their photospheric origins, and (3) to map in detail coronal regions above (specified) limited photospheric areas.The National Center for Atmospheric Research is sponsored by the National Science foundation.Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc. Under contract with the National Science Foundation.  相似文献   

3.
The principal polar-crown coronal helmet structures were selected from nearly three years (May, 1965–January, 1968) of K-coronameter observations made at Haleakala and Mauna Loa, Hawaii. Six isolated and long-lived helmet systems were found at latitudes of 45° and above. Their developments are compared with underlying chromospheric and photospheric activity and a simple phenomenological model is presented showing that a coronal system is formed over an active region. Thereafter the center of gravity of the system gradually drifts poleward with the trailing unipolar magnetic region (UMR), and it becomes a high latitude coronal helmet, arched over a polar crown filament.By comparison of these coronal helmets with observations of the outer corona (to circa 4 R ) made at solar eclipse, lunar sunset, and with balloon and rocket-borne externally occulted corona-graphs, it appears that ground-based K-coronameter measurements to a distance of 1.5–2.0 R are sufficient to detect the coronal streamers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
The High Altitude Observatory Coronagraph/Polarimeter, to be flown on the National Aeronautics and Space Administration's Solar Maximum Mission satellite, is designed to produce images of the solar corona in seven wavelength bands in the visible spectral range. The spectral bands have been chosen to specifically exclude or include chromospheric spectral lines, so as to allow discrimination between ejecta at high (coronal) and low (chromospheric) temperatures, respectively. In addition, the instrument features spectral filters designed to permit an accurate color separation of the F and K coronal components, and a narrow band (5.5 Å) filter to observe the radiance and polarization of the Fe xiv 5303 Å line. The effective system resolution is better than 10 arc sec and the instrument images a selected quadrant (or smaller field) on an SEC vidicon detector. The total height range that may be recorded encompasses 1.6 to more than 6.0R (from Sun center). The instrument is pointed independently of the SMM spacecraft, and its functions are controlled through the use of a program resident within the onboard spacecraft computer. Major experimental goals include: (a) Observation of the role of the corona in the flare process and of the ejecta from the flare site and the overlying corona; (b) the study of the direction of magnetic fields in stable coronal forms, and, perhaps, ejecta; and (c) examination of the evolution of the solar corona near the period of solar maximum activity.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
R. R. Fisher 《Solar physics》1978,57(1):119-128
The Sacramento Peak Observatory's 40 cm coronagraph was used with an emission line photometer to observe the distribution of 5303 Fe XIV brightness as a function of position angle, height above the limb, and time. These data were used to construct models of the volume emissivity as a function of solar latitude and longitude. These models in turn yield estimates of the distribution of electron density in the lower solar corona as a function of latitude and longitude for several specific periods in 1973 and 1975. Three observational results are obtained. An upper limit for the inferred electron density in coronal hole regions is set at log N e = 7.4 for an altitude of 1.15R . Density models from late 1973 demonstrate an evolutionary trend toward a rather regular four-lobed appearance of coronal material; models from 1975 suggest that this characterization persisted for at least 27 solar rotations. A decrease in the total integrated 5303 intensity of a factor of 2.9 is inferred to have taken place between 1973 and 1975.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
The electron density distribution of the inner solar corona (r 2 R ) as a function of latitude, longitude, and radial distance is determined from K-coronameter polarization-brightness (pB) data. A Legendre polynomial is assumed for the electron density distribution, and the coefficients of the polynomial are determined by a least-mean-square regression analysis of several days of pB-data. The calculated electron density distribution is then mapped as a function of latitude and longitude. The method is particularly useful in determining the longitudinal extent of coronal streamers and enhancements and in resolving coronal features whose projections on the plane of the sky overlap.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
Long-lived brightness structures in the solar electron corona persist over many solar rotation periods and permit an observational determination of coronal magnetic tracer rotation as a function of latitude and height in the solar atmosphere. For observations over 1964–1976 spanning solar cycle 20, we compare the latitude dependence of rotation at two heights in the corona. Comparison of rotation rates from East and West limbs and from independent computational procedures is used to estimate uncertainty. Time-averaged rotation rates based on three methods of analysis demonstrate that, on average, coronal differential rotation decreases with height from 1.125 to 1.5 R S. The observed radial variation of differential rotation implies a scale height of approximately 0.7 R S for coronal differential rotation.Model calculations for a simple MHD loop show that magnetic connections between high and low latitudes may produce the observed radial variations of magnetic tracer rotation. If the observed tracer rotation represents the rotation of open magnetic field lines as well as that of closed loops, the small scale height for differential rotation suggests that the rotation of solar magnetic fields at the base of the solar wind may be only weakly latitude dependent. If, instead, closed loops account completely for the radial gradients of rotation, outward extrapolation of electron coronal rotation may not describe magnetic field rotation at the solar wind source. Inward extrapolations of observed rotation rates suggest that magnetic field and plasma are coupled a few hundredths of a solar radius beneath the photosphere.  相似文献   

8.
A study of the background corona near solar minimum   总被引:2,自引:0,他引:2  
The white light coronagraph data from Skylab is used to investigate the equatorial and polarK andF coronal components during the declining phase of the solar cycle near solar minimum. Measurements of coronal brightness and polarization brightness product between 2.5 and 5.5R during the period of observation (May 1973 to February 1974) lead to the conclusions that: (1) the equatorial corona is dominated by either streamers or coronal holes seen in projections on the limb approximately 50% and 30% of the time, respectively; (2) despite the domination by streamers and holes, two periods of time were found which were free from the influences of streamers or holes (neither streamers nor holes were within 30° in longitude of the limb); (3) the derived equatorial background density model is less than 15% below the minimum equatorial models of Newkirk (1967) and Saito (1970); (4) a spherically symmetric density model for equatorial coronal holes yields densities one half those of the background density model; and (5) the inferred brightness of theF-corona is constant to within ±10% and ±5% for the equatorial and polar values, respectively, over the observation period. While theF-corona is symmetric at 2R it begins to show increasing asymmetry beyond this radius such that at 5R the equatorialF-coronal brightness is 25% greater than the polar brightness.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 R . We identify motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.NCAR is sponsored by the National Science Foundation.  相似文献   

10.
Activity associated with the solar origin of coronal mass ejections   总被引:2,自引:0,他引:2  
Solar coronal mass ejections (CMEs) observed in 1980 with the HAO Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite are compared with other forms of solar activity that might be physically related to the ejections. The solar phenomena checked and the method of association used were intentionally patterned after those of Munro et al.'s (1979) analysis of mass ejections observed with the Skylab coronagraph to facilitate comparison of the two epochs. Comparison of the results reveals that the types and degree of CME associations are similar near solar activity minimum and at maximum. For both epochs, most CMEs with associations had associated eruptive prominences and the proportions of association of all types of activity were similar. We also found a high percentage of association between SMM CMEs and X-ray long duration events (LDEs), in agreement with Skylab results. We conclude that most CMEs are the result of the destabilization and eruption of a prominence and its overlying coronal structure, or of a magnetic structure capable of supporting a prominence.Much of this work was performed as a Visiting Scientist at the High Altitude Observatory/NCAR.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
The energy balance of open-field regions of the corona and solar wind and the influence of the flow geometry in the corona upon the density and temperature, are analyzed. It is found that the energy flux arriving at the corona is constant for the corona's open regions with different flow geometries. For the waves heating the corona and solar wind, the dependence of the absorption coefficient on the corona's plasma density is found to be within the range of distances r=1.05–1.5R . It is shown that the wave absorption is more dependent on electron density than the coronal emission. It is this difference that causes lower-density coronal holes to be colder than quiet regions. It is found that the additional energy flux necessary for providing energy balance of the corona and for producing solar wind is a flux of Alfvén waves, which can provide the energy needed for producing quasi-stationary high-speed solar wind streams. Theoretical models of coronal holes and the question of why the high-speed solar wind streams are precisely flowing out of coronal holes, are discussed.  相似文献   

12.
Riddle  A. C. 《Solar physics》1974,39(1):153-154
The observations of a brief flaring region between two plages on the eastern limb of the Sun and the subsequent coronal transient are reported for June 16, 1972 by Koomen et al. (1974). Both of these events have unambiguous and closely timed associations with the solar noise bursts observed at 2800 and 2700 MHz and are also accompanied with good X-ray and SID effects but faint subflare (Solar-Geophysical Data). The two frequencies are those monitored at widely separated stations operated by the Astrophysics Branch of the National Research Council at Lake Traverse, Ontario and at Penticton, B.C.  相似文献   

13.
This paper is an exploration of the possibility that the large-scale equilibrium of plasma and magnetic fields in the solar corona is a minimum energy state. Support for this conjecture is sought by considering the simplest form of that equilibrium in a dipole solar field, as suggested by the observed structure of the corona at times of minimum solar activity. Approximate, axisymmetric solutions to the MHD equations are constructed to include both a magnetically closed, hydrostatic region and a magnetically open region where plasma flows along field lines in the form of a transonic, thermally-driven wind. Sequences of such solutions are obtained for various degrees of magnetic field opening, and the total energy of each solution is computed, including contributions from both the plasma and magnetic field. It is shown that along a sequence of increasingly closed coronal magnetic field, the total energy curve is a non-monotonic function of the parameter measuring the degree of magnetic field opening, with a minimum occurring at moderate field opening.For reasonable choices of model parameters (coronal temperature, base density, base magnetic field strength, etc.), the morphology of the minimum energy solution resembles the observed quiet, solar minimum corona. The exact location energy minimum along a given sequence depends rather sensitively on some of the adopted parameter values. It is nevertheless argued that the existence of an energy minimum along the sequences of solutions should remain a robust property of more realistic coronal wind models that incorporate the basic characteristics of the equilibrium corona- the presence of both open and closed magnetic regions.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
It is shown that the simultaneous consideration of observed values of the solar wind proton flux density at 1 AU and of the electron pressure at the base of the solar corona leads to relatively strong constraints on the coronal temperature in the region of subsonic solar wind flow. The extreme upper limit on the mean coronal temperature in the subsonic region is found to be about 2.6 × 106 K, but this upper limit is reduced to about 2.0 × 106 K if reasonable, rather than extreme, assumptions are made; the limit on the maximum temperature is about 0.5 × 106 K greater than the limit on the mean. It is also found that the same two observations limit the rate of momentum addition possible in the region of subsonic solar wind flow.On leave from The Auroral Observatory, Institute of Mathematical and Physical Sciences, University of Troms0, N-9001 Tromsø, Norway.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
A large equatorial coronal streamer observed in the outer corona (3R ) grew in brightness and size during successive limb passages between October 6, 1973 and January 10, 1974 (solar rotations 1606–1611). Unlike previous studies of streamers and their photospheric associations, no definite surface feature could be identified in the present case. This suggests that the streamer is associated with the large scale photospheric magnetic field. Comparison of the streamer growth with observed underlying photospheric magnetic flux changes indicated that as the streamer increased in brightness, areal extent, and density, the photospheric magnetic flux decreased. Three possible explanations for the streamer's growth are presented; the conceptually simplest being that the decrease in photospheric field results in an opening of the flux tubes under the streamer which permits an increased mass flux through the streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
A correlative study is made between inferred solar sources of high-speed solar wind streams and extended white-light coronal features. The solar wind data used in the study consists of 110 co-rotating high-speed plasma streams observed from spacecraft at 1 AU in the period February 1971-December 1974; the coronal data consists of 144 equatorward extensions of polar coronal holes and 15 equatorial coronal holes, derived fromK-coronometer maps of the white-light corona during the same period. Of 110 observed solar wind streams 88 could directly be associated with an equatorward extension of a polar-cap coronal hole and 14 could be associated with a low-latitude equatorial coronal hole. In 8 cases no visible coronal feature was identified. Of 144 identified polar-cap extensions 102 were associated with a high-speed stream observed at 1 AU; 19 coronal features were related in time to data gaps in the solar wind measurements, while 38 features did not give rise to solar wind streams observed at Earth orbit. The probability of an association depended on the heliographic co-latitude of a polar hole extension, being 50% for a polar lobe extending down to 45° co-latitude and 100% for a polar coronal hole extending to 80° co-latitude or more.Paper presented at the 11th European Regional Astronomical Meeting of the IAU on New Windows to the Univese, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

17.
Obridko  V. N.  Shelting  B. D. 《Solar physics》2011,270(1):297-310
The comparison of the brightness and area of coronal holes (CH) to the solar wind speed, which was started by Obridko et al. (Solar Phys. 260, 191, 2009a) has been continued. While the previous work was dealing with a relatively short time interval 2000 – 2006, here we have analyzed the data on coronal holes observed in the Sun throughout activity Cycle 23. A catalog of equatorial coronal holes has been compiled, and their brightness and area variations during the cycle have been analyzed. It is shown that CH is not merely an undisturbed zone between the active regions. The corona heating mechanism in CH seems to be essentially the same as in the regions of higher activity. The reduced brightness is the result of a specific structure with the magnetic field being quasi-radial at as low an altitude as 1.1R or a bit higher. The plasma outflow decreases the measure of emission from CH. With an adequate choice of the photometric boundaries, the CH area and brightness indices display a fairly high correlation (0.6 – 0.8) with the solar wind velocity throughout the cycle, except for two years, which deviate dramatically – 2001 and 2007, i.e., the maximum and the minimum of the cycle. The mean brightness of the darkest part of CH, where the field lines are nearly radial at low altitudes, is of the order of 18 – 20% of the solar brightness, while the brightness of the other parts of the CH is 30 – 40%. The solar wind streams originate at the base of the coronal hole, which acts as an ejecting nozzle. The solar wind parameters in CH are determined at the level where the field lines are radial.  相似文献   

18.
The solar magnetic field maps every point in the corona to a corresponding place on the solar surface. Identifying the magnetic connection map is difficult at low latitudes near the heliospheric current sheet, but remarkably simple in coronal hole interiors. We present a simple analytic magnetic model (‘pseudocurrent extrapolation’) that reproduces the global structure of the corona, with significant physical advantages over other nearly analytic models such as source-surface potential field extrapolation. We use the model to demonstrate that local horizontal structure is preserved across altitude in the central portions of solar coronal holes, up to at least 30 Rs, in agreement with observations. We argue that the preserved horizontal structure may be used to track the magnetic footpoint associated with the location of a hypothetical spacecraft traveling through the solar corona, to relate in situ measurements of the young solar wind at ∼10–30 Rs to particular source regions at the solar surface. Further, we discuss the relationship between readily observable geometrical distortions and physical parameters of interest such as the field-aligned current density.  相似文献   

19.
G. D. Parker 《Solar physics》1973,31(1):259-269
The coronal green line intensity is inappropriate for correlation studies of galactic cosmic ray variations. Being a non-monotonic function of coronal temperature, the green line intensity is a good index of neither coronal temperature nor solar wind speed. A more appropriate measure of coronal activity is the intensity of the electron corona. Two-dimensional observations of the K-corona trace changes in coronal morphology during the solar cycle. An index based on four years of K-coronal measurements made in Hawaii shows that activity in the lower corona is not better correlated than sunspot number with long-term modulation. Correlation analysis defines the time lag of modulation much too poorly to permit its use in estimating the size of the heliosphere.  相似文献   

20.
In this study we analyse the positions of major flares from 1978 and 1979, with respect to the magnetic structure of the solar corona, as described by a potential field model. We find that major flares exhibit no strong association with the neutral line at the chromospheric level. However, when we calculate the neutral line's position at higher and higher altitudes in the corona, we find that major flares show an increasing tendency to be found close to these high-altitude coronal neutral lines. The correlation between flares and higher-altitude coronal neutral lines reaches a maximum at an altitude of 0.35R , and thereafter decreases as the neutral line is moved out to the source surface at an altitude of 1.50R . This indicates that major flares are strongly associated with coronal structure at the 0.35R level ( 250 000 km) - an altitude surprisingly high in the corona. This reinforces the idea that flares are associated with large-scale coronal magnetic fields and also indicates that the region of coronal magnetic topology important to solar flare processes may be larger than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号