首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper proposes two simple models, look-up table(LUT) model and empirical model, to directly retrieve significant wave height(Hs) using synthetic aperture radar(SAR) azimuth cutoff(λc). Both models aim at C-band VV, HH, VH, and HV single-polarization SAR images. The LUT model relates Hs to λc, while the empirical model relates Hs to both λc and SAR range-to-velocity(β). The LUT model coefficients are derived by simulation under different sea states and observation conditions, which depend on incidence angle(θ), wave direction(dw), and βbut are independent of polarization. The empirical model coefficients are obtained by fitting the collocated data,which only depend on polarization. To fit empirical model coefficients and validate the two models, C-band RADARSAT-2 fine quad-polarization(VV+HH+VH+HV) single-look complex(SLC) SAR images and collocated buoy data are collected. Retrieved Hs, using Yang model and the two models proposed in this paper from four kinds of polarization SAR data, are compared with buoy Hs. Results show that both LUT and empirical models have the capacity of retrieving Hs from C-band RADARSAT-2 co-polarization SAR data, while Yang model is not suitable for these kinds of SAR data. Moreover, the empirical model is also valid for cross-polarization SAR data showing clear ocean wave stripes.  相似文献   

2.
In the satellite synthetic aperture radar (SAR) images of the Bohai Sea and Huanghai Sea, the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km. Comparing SAR observations with sea surface wind fields and surface weather maps, the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front. The authors define the waves as atmospheric frontal gravity waves. The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008. A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves. The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images. The CMOD-5 (C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV (transmitted vertical and received vertical) for ENVISAT and HH (transmitted horizontally and received horizontally) for RADARSAT-1. A reasonable agreement between the analytical solution and the SAR observation is reached. This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves, coastal lee waves, and upstream Atmospheric Gravity Waves (AGW).  相似文献   

3.
海洋微波散射模型相比于以经验统计建立的地球物理模式函数具有不受特定微波频率限制的优势。组合布拉格散射模型和几何光学模型形成了复合雷达后向散射模型。利用南海北部气象浮标2014年海面风速风向实测值作为散射模型输入,分别比较了复合雷达后向散射模型与RADARSAT-2卫星C波段SAR、HY-2A卫星Ku波段微波散射计的海面后向散射系数,偏差分别为(?0.22±1.88) dB (SAR)、(0.33±2.71) dB (散射计VV极化)和(?1.35±2.88) dB (散射计HH极化);以美国浮标数据中心(NDBC)浮标2011年10月1日至2014年9月30日共3年的海面风速、风向实测值作为散射模型输入,分别比较了复合雷达后向散射模型与Jason-2、HY-2A卫星Ku波段高度计海面后向散射系数,偏差分别为(1.01±1.15) dB和(1.12±1.29) dB。中等入射角和垂直入射下的卫星传感器后向散射系数观测值与复合雷达后向散射模型模拟值比较,具有不同的偏差,但具有相同的海面风速检验精度,均方根误差小于1.71 m/s。结果表明,复合雷达后向散射模型可模拟计算星载SAR、散射计和高度计观测条件下的海面雷达后向散射系数,且与CMOD5、NSCAT-2、高度计业务化海面风速反演的地球物理模式函数的计算结果具有一致性;复合雷达后向散射模型可用于微波遥感器的定标与检验、海面雷达后向散射的模拟。  相似文献   

4.
本文选取142幅RADARSAT-2全极化合成孔径雷达(SAR)影像,在没有入射角输入的情况下,首先利用C-2PO模型进行海面风速反演。随后,将同一时空下的ASCAT散射计风向作为初始风向,提取相应雷达入射角,利用地球物理模式函数(GMF) CMOD5.N对142幅SAR影像进行风速计算。反演结果与美国国家资料浮标中心海洋浮标风速数据对比,结果显示:CMOD5.N GMF和C-2PO模型均可反演出较高精确度的海面风速,其均方根误差分别为1.68 m/s和1.74 m/s。此外,研究发现,在低风速段,CMOD5.N GMF的风速反演精度要明显优于C-2PO模型。针对这一现象,本文以SAR系统成像机理为基础,以低风速SAR图像为具体案例,给出了3种造成这一现象的原因。  相似文献   

5.
程玉鑫  艾未华  孔毅  赵现斌 《海洋科学》2015,39(12):157-164
在合成孔径雷达(Synthetic Aperture Radar,SAR)海面风场反演中,基于风条纹影像纹理特征的海面风向反演方法精度高,但是依赖于图像风条纹的存在,而外部风向信息与SAR资料时空分辨率不易匹配、精度较低,从而影响大面积、高分辨率海面风场反演的精度。针对此问题,提出一种将SAR图像风条纹线性纹理特征与外部风向信息相结合的星载SAR海面风向获取方法,在SAR影像线性纹理特征明显的区域采用二维连续小波变换得到高精度的海面风向,其余区域采用与之时空相匹配的数值预报模式风向填充;并利用地球物理模型函数进一步得到海面风速,进而实现高精度、大范围海面风场的反演。为验证本文方法的有效性,利用ENVISAT/ASAR数据进行风场反演试验,并将反演结果与浮标实测数据进行比对。结果表明:在线性纹理特征明显的区域,小波方法的反演精度优于快速傅里叶变换(FFT)法和数值预报模式风向;外部风向精度略低,但与SAR观测资料时空匹配性较好,弥补了风条纹风向的不足。二者的结合为星载SAR海面风场反演的业务化应用提供了支持。  相似文献   

6.
Chinese Gaofen-3(GF-3) is the first civilian satellite to carry C-band(5.3 GHz) synthetic aperture radar(SAR).During the period of August 2016 to December 2017, 1 523 GF-3 SAR images acquired in quad-polarization(vertical-vertical(VV), horizontal-horizontal(HH), vertical-horizontal(VH), and horizontal-vertical(HV)) mode were recorded, mostly around China's seas. In our previous study, the root mean square error(RMSE) of significant wave height(SWH) was found to be around 0.58 m when compared with retrieval results from a few GF-3 SAR images in co-polarization(VV and HH) with moored measurements by using an empirical algorithm CSAR_WAVE. We collected a number of sub-scenes from these 1 523 images in the co-polarization channel,which were collocated with wind and SWH data from the European Centre for Medium-Range Weather Forecasts(ECMWF) reanalysis field at a 0.125° grid. Through the collected dataset, an improved empirical wave retrieval algorithm for GF-3 SAR in co-polarization was tuned, herein denoted as CSAR_WAVE2. An additional 92 GF-3 SAR images were implemented in order to validate CSAR_WAVE2 against SWH from altimeter Jason-2, showing an about 0.52 m RMSE of SWH for co-polarization GF-3 SAR. Therefore, we conclude that the proposed empirical algorithm has a good performance for wave retrieval from GF-3 SAR images in co-polarization.  相似文献   

7.
Ocean wave parameters retrieved directly from compact polarimetric SAR data   总被引:1,自引:0,他引:1  
We aim to directly invert wave parameters by using the data of a compact polarimetric synthetic aperture radar(CP SAR) and validate the effectiveness of ocean wave parameter retrieval from the circular transmit/linear receive mode and π/4 compact polarimetric mode. Relevant data from the RADARSAT-2 fully polarimetric SAR on the C-band were used to obtain the compact polarimetric SAR images, and a polarimetric SAR wave retrieval algorithm was used to verify the sea surface wave measurements. Usin...  相似文献   

8.
A new model developed from the full-spectrum model of Lyzenga and Bennett ( 1988 ) is built up by us preliminarily through considering the impact of the ocean surface mixed layer turbulence on SAR remote sensing of internal solitary waves. In the partial differential equation of the action spectral density of the surface gravity-capillary waves the source function representing the contribution of the turbulence is added besides the usual source function representing the contribution of the wind. The source function is determined by applying the κ - ε model and adopting the Nasmyth spectrum of oceanic turbulence ( Nasmyth, 1970; Oakey, 1982; Fan, 2002) on the basis of the previous simulation results of internal tide transformation obtained in the companion paper (Fan et al. ,2008). Either under relatively high wind speed, or under low wind speed, our model predicts significant large modulations of radar backscatter at all three bands ( L, C and X bands) for both VV and HH polarization. These results prove that considering the impact of ocean surface mixed layer turbulence on SAR remote sensing of internal solitary waves is reasonable and appropriate for settlement of the well-known problem of contemporary radar imaging models.  相似文献   

9.
Theoretical-based ocean wave retrieval algorithms are applied by inverting a synthetic aperture radar(SAR)intensity spectrum into a wave spectrum, that has been developed based on a SAR wave mapping mechanism. In our previous studies, it was shown that the wave retrieval algorithm, named the parameterized first-guess spectrum method(PFSM), works for C-band and X-band SAR at low to moderate sea states. In this work, we investigate the performance of the PFSM algorithm when it is applied for dual-polarization c-band sentinel-1(S-1) SAR acquired in extra wide-swath(EW) and interferometric wide-swath(IW) mode under cyclonic conditions.Strong winds are retrieved from six vertical-horizontal(VH) polarization S-1 SAR images using the c-band crosspolarization coupled-parameters ocean(C-3 PO) model and then wave parameters are obtained from the image at the vertical-vertical(VV) polarization channel. significant wave height(SWH) and mean wave period(MWP) are compared with simulations from the WAVEWATCH-III(WW3) model. The validation shows a 0.69 m root mean square error(RMSE) of SWH with a –0.01 m bias and a 0.62 s RMSE of MWP with a –0.17 s bias. Although the PFSM algorithm relies on a good quality SAR spectrum, this study confirms the applicability for wave retrieval from an S-1 SAR image. Moreover, it is found that the retrieved results have less accuracy on the right sector of cyclone eyes where swell directly affects strong wind-sea, while the PFSM algorithm works well on the left and rear sectors of cyclone eyes where the interaction of wind-sea and swell is relatively poor.  相似文献   

10.
海浪微波散射理论模式   总被引:4,自引:1,他引:3  
何宜军 《海洋与湖沼》2000,31(2):178-185
在假设海面白帽为球形气泡层的基础上,利用白帽海面的矢量辐射传输方程各随机粗糙面散射模型建立了海面的微波散射模型。辐射传输方程利用迭代法求解,随机粗糙面散射模型采用双尺度散射模型,利用白帽覆盖率的经验公式计算海面的微波散射特性。数值计算结果表明,随着气泡厚度的增加球形气泡散射系数越来越接近球形粒子散射系数;白帽对散射同的贡献随风速增大而增大;侧风情况比逆风和顺风情况影响均大;水平极化比垂直极化影响大  相似文献   

11.
基于SAR图像雨团足印的海面风向提取方法   总被引:1,自引:1,他引:0  
利用地球物理模式函数进行SAR海面风速反演时,需以风向作为地球物理模式函数的输入。本文应用了一种利用SAR图像上雨团足印顺风一侧比逆风一侧明亮的图像特征的海面风向提取方法,以进行海面风速反演。4景RADARSAT-2卫星SAR示例数据风向提取结果相对于ASCAT散射计的风向均方根误差满足不大于16°。分别以本文方法提取的风向和ASCAT散射计风向作为输入,利用地球物理模式函数CMOD5进行海面风速的SAR反演,两者的风速反演结果基本一致,其均方根误差差值不超过0.3 m/s。本文利用SAR图像雨团足印信息的风向提取方法准确可靠,可应用于SAR海面风速反演。  相似文献   

12.
中等海况下,星载合成孔径雷达(Synthetic Aperture Radar,SAR)已经广泛应用于海洋动力环境要素的监测(风场、波浪、流场)。近年来,SAR高海况遥感,尤其是探测台风海面风场、巨浪、流场已经成为国内外研究热点,并突破了一些关键技术。利用SAR多极化成像模式对海观测和新发展的地球物理模式函数,可以提取高海况下的海面风速、风向、有效波高、流速和流向等海洋表面关键物理参数。这些环境要素可以用于海洋灾害监测预警;为海洋和大气数值模式提供准确的初始场和同化源,改进模式预报精度;为研究全球气候变化提供有力的观测依据。  相似文献   

13.
The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.  相似文献   

14.
利用ALOS PALSAR全极化SAR内波图像,对比分析了SAR海洋内波在11种极化特征与后向散射系数(σ0) 图像中的可视性。在提取的SAR极化特征图像中,Lambda值的内波特征最为明显,极化熵和极化角次之。与σ0图像相比,Lambda值的内波可视性优于同极化的σ0图像;对于极化熵和极化角,沿距离向传播的内波可视性优于同极化的σ0图像,沿方位向传播的内波可视性略差于同极化的σ0图像,两者均优于交叉极化的σ0图像。HH/VV极化比、归一化圆极化系数和Bata值的内波特征较弱;HH/HV极化比、VV/VH极化比、Gamma值、Delta值和各向异性指数的内波图像均不清晰,无法识别内波。  相似文献   

15.
The paper presents the results of applying a new polarization method proposed in [28] to identify the type of surface pollution and differentiate between mineral oil films (crude oil and its emulsion and petroleum products) and films of other origin in sea surface radar images. The method is based on calculation of the quantitative characteristics for the ratios of suppression or intensification of scattered radio signals of different physical nature, viz., caused by capillary ripples several centimeters long, or wave breaking. TerraSAR-X satellite coaxial-polarized (VV/HH) SAR images are used. The data for analysis have been collected in areas where spots and slicks of known origin regularly occur, such as oil spills and natural oil seeps in the Gulf of Mexico and the Caspian Sea, and biogenic films in the Caspian Sea. The results of analyzing radar images from the TerraSAR-X satellite with controlled experimental oil emulsion spills in the North Sea are used for comparison. Based on the analysis of ten TerraSAR-X radar polarization images with surface sensing angles greater than 30°, it is shown that this method makes it possible to distinguish between oil spills and slicks formed by natural oil seeps and biogenic films with an accuracy higher than 80% regardless of the observation area.  相似文献   

16.
This paper describes two algorithms for the retrieval of high-resolution wind and wave fields from radar-image sequences acquired by a marine X-band radar. The wind-field retrieval algorithm consists of two parts. In the first part, wind directions are extracted from wind-induced streaks, which are approximately in line with the mean surface wind direction. The methodology is based on the retrieval of local gradients from the mean radar backscatter image and assumes the surface wind direction to be oriented normal to the local gradient. In the second part, wind speeds are derived from the mean radar cross section. Therefore, the dependence of the radar backscatter on the wind vector and imaging geometry has to be determined. Such a relationship is developed by using neural networks (NNs). For the verification of the algorithm, wind directions and speeds from nearly 3300 radar-image sequences are compared to in situ data from a colocated wind sensor. The wave retrieval algorithm is based on a methodology that, for the first time, enables the inversion of marine radar-image sequences to an elevation-map time series of the ocean surface without prior calibration of the acquisition system, and therefore, independent of external sensors. The retrieved ocean-surface elevation maps are validated by comparison of the resulting radar-derived significant wave heights, with the significant wave heights acquired from three colocated in situ sensors. It is shown that the accuracy of the radar-retrieved significant wave height is consistent with the accuracy of the in situ sensors.  相似文献   

17.
通过地球物理模型建立后向散射系数与海面风矢量的关系,可将散射计从不同方位角测得的风矢量单元后向散射系数反演得到风矢量,因此地球物理模型在风速反演中起着至关重要的作用。使用神经网络方法,利用C波段经验模型CMOD4和Ku波段经验模型QSCAT—1仿真数据建立了形式统一的C波段和Ku波段地球物理模型。新模型将电磁波频率作为模型的参数之一,使新模型不再局限于特定的传感器,并使C波段与Ku波段具有统一的形式。分析表明,由新模型建立的后向散射系数与海面风矢量的关系同经验模型具有很好的可比性。利用新模型反演的风速与CMOD4和QSCAT—1模型反演的风速具有很好的一致性,说明新模型在具有统一简洁形式的同时也兼有与经验统计模型相同的有效性。  相似文献   

18.
为了解各向异性随机粗糙海面的微波双站散射机制及其特性,本文利用解析近似的积分方程模型以及一种改进的半经验海浪谱模型实现了对各向异性随机粗糙海面的全极化微波散射仿真模拟,并与卫星观测数据、经验的地球物理模式函数及已有的解析近似散射模型仿真结果进行了对比,验证了仿真结果的可行性和准确性。利用该模型分析了入射波频率、入射角、极化方式、海面风速及风向等参数对各向异性海面双站散射的影响。模拟结果表明,在不同的入射角、散射角及方位角等观测几何条件下,海面不同波段的双站散射表现出不同的空间散射特性,且对风速、风向等海面动力学参数表现出不同的敏感性,以L波段为例,海面向后半球双站散射在各个极化方式下都对风速较为敏感,而在同极化方式下,其对风向的响应在中低风速和高风速条件下相反,整体而言,低风速下海面双站散射对风向更为敏感。这表明对于海面动力参数的反演,双站散射可以提供比传统单站雷达后向散射更丰富的物理信息。本文探讨了各向异性海面微波双站散射特性,为基于主动式及分布式微波传感器的海洋动力参数遥感反演提供了理论分析基础。  相似文献   

19.
Gaofen-3(GF-3), a Chinese civil synthetic aperture radar(SAR) at C-band, has operated since August 2016.Remarkably, several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study, six images acquired in Global Observation(GLO) and Wide ScanSAR(WSC) modes at verticalvertical(VV) polarization channel are discussed. This work focuses on investigating the observation of rainfall using GF-3 SAR. These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF), significant wave height simulated from the WAVEWATCH-III(WW3) model, sea surface currents from climate forecast system version 2(CFSv2) of the National Centers for Environmental Prediction(NCEP) and rain rate data from the Tropical Rainfall Measuring Mission(TRMM) satellite. Sea surface roughness,was compared with the normalized radar cross section(NRCS) from SAR observations, and indicated a 0.8 correlation(COR). We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height. It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15° to 30°, while it enhances the radar signal at incidence angles ranging from 30° to 45° and incidence angles smaller than 10°. This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.  相似文献   

20.
Microwave remote sensing is one of the most useful methods for observing the ocean parameters. The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars. While the effect of the ocean currents and waves is interactional. It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly. In order to study the relationship between the ocean surface current speed and the Doppler frequency shift, a numerical ocean surface Doppler spectrum model is established and validated with a reference. The input parameters of ocean Doppler spectrum include an ocean wave elevation model, a directional distribution function, and wind speed and direction. The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function(CDOP). What is more, the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed. All these simulations are in Ku band. The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors. With VV polarization, the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s, and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号