首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the photometric and spectroscopic evolution of the type IIn SN 1995G in NGC 1643, on the basis of 4 years of optical and infrared observations. This supernova shows very flat optical light curves similar to SN 1988Z, with a slow decline rate at all times. The spectra are characterized by strong Balmer lines with multiple components in emission and with a P Cygni absorption component blueshifted by only 700 km s−1. This feature indicates the presence of a slowly expanding shell above the SN ejecta as in the case of SNe 1994aj and 1996L. As in other SNe IIn, the slow luminosity decline cannot be explained only with a radioactive energy input, and an additional source of energy is required, most likely that produced by the interaction between supernova ejecta and a pre-existent circumstellar medium (CSM). It was estimated that the shell material has a density   n H≫108 cm-3  , consistent with the absence of forbidden lines in the spectra. About 2 years after the burst the low-velocity shell is largely overtaken by the SN ejecta and the luminosity drops at a faster rate.  相似文献   

2.
3.
We present optical UBVRI photometric and spectroscopic data of the Type Ibn supernova SN 2006jc, until the onset of the dust-forming phase. The optical spectrum shows a blue continuum and is dominated by the presence of moderately narrow (velocity ∼2500 km s−1) He  i emission lines superimposed over a relatively weak supernova spectrum. The helium lines are produced in a pre-existing He-rich circumstellar shell. The observed helium line fluxes indicate the circumstellar shell is dense, with a density of  ∼109–1010 cm−3  . The helium mass in this shell is estimated to be  ≲0.07 M  . The optical light curves show a clear signature of dust formation, indicated by a sharp decrease in the magnitudes around day 50, accompanied by a reddening of the colours. The evolution of the optical light curves during the early phase and that of the uvoir bolometric light curve at all phases is reasonably similar to normal Ib/c supernovae.  相似文献   

4.
Modelling of high-resolution Balmer line profiles in the early-time spectra of SN 1998S shows that the inferred fast (≈400 km s−1) circumstellar (CS) gas on days 23 and 42 post-explosion is confined to a narrow, negative velocity gradient shell just above the photosphere. This gas may be identified with a slow  (v<40 km s−1)  progenitor wind accelerated at the ejecta–wind interface. In this scenario, the photosphere coincides with a cool dense shell formed in the reverse shock. Acceleration by radiation from the supernova or by a shock-accelerated relativistic particle precursor are both possible explanations for the observed fast CS gas. An alternative, equally plausible scenario is that the fast CS gas is accelerated within shocked clouds engulfed by the outer shock, as it propagates through the intercloud wind.  相似文献   

5.
We present contemporaneous optical and infrared (IR) photometric observations of the Type IIn SN 1998S covering the period between 11 and 146 d after discovery. The IR data constitute the first ever IR light curves of a Type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2–3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After ∼100 d the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15±0.05 M of 56Ni which was produced in the explosion. We also report the discovery of an astonishingly high IR excess, K − L '=2.5, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be pre-existing and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material.  相似文献   

6.
7.
8.
We report the detection of the slow-moving wind into which the compact supernova remnant SN 1997ab is expanding. Echelle spectroscopy provides clear evidence for a well-resolved narrow (full width at zero intensity, FWZI ∼180 km s−1) P Cygni profile, both in Hα and Hβ, superimposed on the broad emission lines of this compact supernova remnant. From theoretical arguments we know that the broad and strong emission lines imply a circumstellar density ( n  ≥ 107 cm−3). This, together with our detection, implies a massive and slow stellar wind experienced by the progenitor star shortly prior to the explosion.  相似文献   

9.
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDS) produced by the interaction of the ejecta outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDS dust mass reaches a modest  3.0 × 10−4 M  by day 230. While dust condensation within a CDS formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDS formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least  ∼8 × 10−3 M  . This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.  相似文献   

10.
11.
We report the detection of a very narrow P Cygni profile on top of the broad emission H α and H β lines of the Type IIn Supernova 1997eg. A similar feature has been detected in SN 1997ab, SN 1998S and SN 1995G . The detection of the narrow P Cygni profile indicates the existence of a dense circumstellar material (CSM), into which the ejecta of the supernova is expanding. From the analysis of the spectra of SN 1997eg we deduce (i) that such CSM is very dense  ( n ≳5×107 cm-3)  , (ii) that it has a low expanding velocity of about 160 km s−1. The origin of such dense CSM can be either a very dense progenitor wind  ( M˙ ∼10-2 M yr-1)  or a circumstellar shell product of the progenitor wind expanding into a high-pressure environment.  相似文献   

12.
13.
We present a new set of spectroscopic and photometric data extending the observations of SN 1997D to over 400 d after the explosion. These observations confirm the peculiar properties of SN 1997D, such as the very low abundance of 56Co (0.002 M) and the low expansion velocity of the ejecta (∼1000 km s−1). We discuss the implications of these observations for the character of the progenitor and the nature of the remnant, showing that a Crab-like pulsar or an accreting neutron star formed in the explosion of a low-mass progenitor should already have produced a detectable luminosity at this epoch, in contrast with photometric data. On the other hand, the explosion of a high-mass progenitor with the formation of a black hole is consistent with the available observations. The consequences of this conclusion regarding the nature of the explosion and the prospects of directly identifying the black hole are also addressed.  相似文献   

14.
15.
We present new spectroscopic and photometric data of the Type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal Type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf–Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf–Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a Type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous Type Ia event with some resemblance to SN 1991bg.  相似文献   

16.
17.
18.
We present photometric and spectroscopic data of the peculiar SN 2005la, an object which shows an optical light curve with some luminosity fluctuations and spectra with comparably strong narrow hydrogen and helium lines, probably of circumstellar nature. The increasing full width at half-maximum velocity of these lines is indicative of an acceleration of the circumstellar material. SN 2005la exhibits hybrid properties, sharing some similarities with both Type IIn supernovae and 2006jc-like (Type Ibn) events. We propose that the progenitor of SN 2005la was a very young Wolf–Rayet (WN-type) star which experienced mass ejection episodes shortly before core collapse.  相似文献   

19.
We present X-ray, broad-band optical and low-frequency radio observations of the bright type IIP supernova SN 2004et. The Chandra X-ray Observatory observed the supernova at three epochs, and the optical coverage spans a period of ∼470 d since explosion. The X-ray emission softens with time, and we characterize the X-ray luminosity evolution as   L X∝ t −0.4  . We use the observed X-ray luminosity to estimate a mass-loss rate for the progenitor star of  ∼2 × 10−6 M yr−1  . The optical light curve shows a pronounced plateau lasting for about 110 d. Temporal evolution of photospheric radius and colour temperature during the plateau phase is determined by making blackbody fits. We estimate the ejected mass of 56Ni to be  0.06 ± 0.03 M  . Using the expressions of Litvinova & Nadëzhin we estimate an explosion energy of  (0.98 ± 0.25) × 1051 erg  . We also present a single epoch radio observation of SN 2004et. We compare this with the predictions of the model proposed by Chevalier, Fransson & Nymark. These multiwavelength studies suggest a main-sequence progenitor mass of  ∼20 M  for SN 2004et.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号