首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is generally acknowledged that the mass-loss of asymptotic giant branch (AGB) stars undergoes variations on different time-scales. We constructed models for the dust envelopes for a sample of AGB stars to assess whether mass-loss variations influence the spectral energy distribution. To constrain the variability, extra observations at millimetre wavelengths (1.2 mm) were acquired. From the analysis of the dust models, two indications for the presence of mass-loss variations can be found, being (1) a dust temperature at the inner boundary of the dust envelope that is far below the dust condensation temperature and (2) an altered density distribution with respect to  ρ( r ) ∝ r −2  resulting from a constant mass-loss rate. For five out of the 18 studied sources a two-component model of the envelope is required, consisting of an inner region with a constant mass-loss rate and an outer region with a less steep density distribution. For one source an outer region with a steeper density distribution was found. Moreover, in a search for time variability in our data set at 1.2 mm, we found that WX Psc shows a large relative time variation of 34 per cent which might partially be caused by variable molecular line emission.  相似文献   

2.
We analyse the differences in infrared circumstellar dust emission between oxygen-rich Mira and non-Mira stars, and find that they are statistically significant. In particular, we find that these stars segregate in the K–[12] versus [12]–[25] colour–colour diagram, and have distinct properties of the IRAS LRS spectra, including the peak position of the silicate emission feature. We show that the infrared emission from the majority of non-Mira stars cannot be explained within the context of standard steady-state outflow models.
The models can be altered to fit the data for non-Mira stars by postulating non-standard optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300–400 K) than typical silicate grain condensation temperatures (800–1000 K) . We argue that the latter is more probable and provide detailed model fits to the IRAS LRS spectra for 342 stars. These fits imply that two-thirds of non-Mira stars and one-third of Mira stars do not have hot dust (>500 K) in their envelopes.
The absence of hot dust can be interpreted as a recent (∼100 yr) decrease in the mass-loss rate. The distribution of best-fitting model parameters agrees with this interpretation and strongly suggests that the mass loss resumes on similar time-scales. Such a possibility appears to be supported by a number of spatially resolved observations (e.g. recent Hubble Space Telescope images of the multiple shells in the Egg Nebula) and is consistent with new dynamical models for mass loss on the asymptotic giant branch.  相似文献   

3.
《New Astronomy Reviews》1999,43(6-7):437-440
After a brief review of our current understanding of Miras and their evolutionary status, three aspects of “real-time” evolution in these and related stars are examined: (i) Chemical changes (O-rich to C-rich) due to third dredge-up. (ii) Period changes due to the effects of the helium-shell flash. (iii) The existence of “fossil” dust and gas shells. Studies of resolved gas and dust shells are highlighted as particularly interesting. They will enable us to examine the mass-loss histories of many late-type stars over the last ten thousand years or so. Such observations have only recently become technically feasible and they are expected to provide important new insights into the late stages of stellar evolution.  相似文献   

4.
Our understanding of the late evolution of intermediate mass stars (∼1–8M) through the planetary nebula phase is undergoing major developments. Observations at infrared and millimeter wavelengths have revealed important components of neutral gas and dust in the nebulae that directly trace their formation from mass-loss on the Asymptotic Giant Branch. At the same time, high resolution imaging, especially with the Hubble Space Telescope, has revealed a surprising array of structures in the nebulae: multiple arcs, tori, jets, and myriads of small scale fragments. None of these are fully understood, and all involve the neutral gas component. This paper highlights recent observations of these structures and discusses the open questions, with an emphasis on those areas where observations with ALMA are likely to make important contributions.  相似文献   

5.
We collected infrared and radio data on 110 OH/IR stars, 65 S stars and 184 C-rich stars from the literature. We analyzed their spectral energy distributions, bolometric magnitudes, infrared colors and mass-loss rates. Our study confirms that OH/IR stars and C-rich stars reach similarly high mass-loss rates at similar luminosities, supporting the idea that mass-loss rates are determined by internal stellar activities such as pulsation rather than the properties of their envelopes. The mass-loss rates of OH/IR stars and C-rich stars are strongly correlated with the color indices K-[A], K-[C], K-[D] and K-[E], and the two populations can be described with one formula. Our study also reveals that only those stars with color indices K-[A]<4 or K-[C]<5 have SEDs that peak in the near-infrared waveband.  相似文献   

6.
We have modeled the infrared emission of spherically symmetric, circumstellar dust shells with the aim of deriving the infrared absorption properties of circumstellar silicate grains and the mass-loss rates of the central stars. As a basis for our numerical studies, a simple semianalytical formula has been derived that illustrates the essential characteristics of the infrared emission of such dust shells. A numerical radiative transfer program has been developed and applied to dust shells around oxygen-rich late-type giants. Free parameters in such models include the absorption properties and density distribution of the dust. An approximate, analytical expression is derived for the density distribution of circumstellar dust driven outward by radiation pressure from a central source. A large grid of models has been calculated to study the influence of the free parameters on the emergent spectrum. These results form the basis for a comparison with near-infrared observations. Observational studies have revealed a correlation between the near-infrared color temperature, Tc, and the strength of the 10 micrometers emission or absorption feature, A10. This relationship, which essentially measures the near-infrared optical depth in terms of the 10 micrometers optical depth, is discussed. Theoretical A10-Tc relations have been calculated and compared to the observations. The results show that this relation is a sensitive way to determine the ratio of the near-infrared to 10 micrometers absorption efficiency of circumstellar silicates. These results as well as previous studies show that the near-infrared absorption efficiency of circumstellar silicate grains is much higher than expected from terrestrial minerals. We suggest that this enhanced absorption is due to the presence of ferrous iron (Fe2+) color centers dissolved in the circumstellar silicates. By using the derived value for the ratio of the near-infrared to 10 micrometers absorption efficiency, the observed A10-Tc relation can be calibrated in terms of the total dust column density of the circumstellar shell and thus the mass-loss rate of late-type giants can easily be derived. Detailed models have been made of the infrared emission of three well-studied Miras: R Cas, IRC 10011, and OH 26.5+0.6, with the emphasis on the shape of the 10 micrometers emission or absorption feature. The results show that the intrinsic shape of the 10 micrometers resonance varies from a very broad feature in R Cas to a relatively narrower feature in OH 26.5+0.6, with IRC 10011 somewhere in between. Possible origins of this variation are discussed. The mass-loss rates from these objects are calculated to be 3 x 10(-7), 2 x 10(-5), and 2 x 10(-4) M Sun yr-1 for R Cas, IRC 10011, and OH 26.5+0.6, respectively. These results are compared to other determinations in the literature.  相似文献   

7.
We present a radiative transfer analysis of circumstellar dust shells around the Post-AGB stars HD 179821, HD 56126, HD 101584 and early R star HD 100764, using the code DUSTY. Parameters like mass-loss, shell inner radius, dust temperature, outflow velocity etc., are derived for HD 179821and HD 56126 whose observed SED could be reproduced by our models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We collected almost all Highly Processed Data Products(HPDP)of ISO SWS01 spectra for the Galactic visual carbon stars,infrared carbon stars,extreme carbon stars and carbon-rich proto-planetary nebulae(PPNs).Those infrared spectra are primarily analyzed and discussed.It is shown that either spectral shapes/peaks,or main molecular/dust features are evidenced to change in the sequence of visual carbon stars,infrared carbon stars,extreme carbon stars and carbon-rich PPNs.Statistically,in this sequence,continua are gradually changed from blue to red and locations of spectral peaks of continua are also gradually changed from short wavelengths to long wavelengths.In addition,in this sequence,intensifies of main molecular/dust features are also gradually changed from prominent in the short wavelengths to prominent in the long wavelengths.Furthermore,from 2MASS and IRAS photometric data,the sequence is also proved.Results in this paper strongly support the previous suggestion for the evolution sequence of carbon-rich objects in our Galaxy,that is the sequence of visual carbon stars→infrared carbon stars→extreme carbon stars→carbon-rich PPNs.  相似文献   

9.
The presence of small clusters of silicon carbide (SiC) in circumstellar dust shells surrounding late-type stars is inferred from a broad emission feature peaking at around 11 micrometre in infrared spectra (Little-Marenin ,1986 ApJ Lett. 307, L15). These clusters are expected to condense from molecular arrangements composed of a few carbon and silicium atoms which are present in stellar winds surrounding carbon-rich late-type stars. we have searched for all the possible geometric structures of SiC n + radicals (n <= 5) with help of ab initio calculations (T = 0 K). Vibrational frequencies of the most stable species have then been determined . the destabilizing influence of a finite temperature effect on these structures has also been studied by using general considerations of thermal statistics. We show that for n >= 3 linear structures are energetically favored compared to the planar and three-dimensional ones. A comparison with other results published in this context is also made.  相似文献   

10.
本文采用恒星演化计算与恒星振动计算相结合的方法,对中等质量富金属恒星演化到渐近巨星分支时的振动性质进行了分析研究,从理论上得出这类恒星的振动方式是处于一阶谐频振动,而振动的激发则是在氢电离区和氦的二次电离区由多种机制共同作用造成的,同时提出很长周期的AGB长周期变星只能是由中等质量恒星演化到AGB阶段形成的。我们的理论计算结果还比较支持在AGB顶端存在巨大星风物质损失的观点,且这种星风物质损失很可能与恒星振动有关。  相似文献   

11.
Mapping observations have been made toward five carbon stars in the far-infrared using ISOPHOT, an imaging photo-polarimeter on board the Infrared Space Observatory. Cold, very extended dust shells are clearly revealed in two of them. Y CVn is surrounded by a very extended, detached dust shell, which indicates a sudden decline of the mass-loss by two orders of magnitude in the last (1-2) × 104 years on a short time scale. The Hipparcos parallax reinforces our previous conclusion that Y CVn is a J-type carbon star on the asymptotic giant branch. U Ant shows a double shell structure, a compact dust shell surrounded by a very extended one. The outer shell has a brightness comparable to the dust shell of Y CVn. The structure indicates that there were two different high mass-loss phases separated by a period with a much lower mass-loss rate in between the two. The structure is consistent with the double dust shell proposed for this star by Izumiura et al. (1997) based on a detailed investigation of IRAS survey data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
We present spectroscopic observations from the Spitzer Space Telescope of six carbon-rich asymptotic giant branch (AGB) stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C2H2 and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the Large Magellanic Cloud, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the dusty radiative transfer model and determine their dust mass-loss rates to be in the range  1.0–3.3 × 10−8 M yr−1  . The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars shows the strongest SiC feature in our present Local Group sample.  相似文献   

13.
Book reviews     
The possibility of the existence, around type-I supernovae, of dust shells which existed before a supernova outburst is considered. None have so far been detected observationally; and any dust around the progenitor radiating in the near infrared would evaporate at outburst. Far infrared observations of the two possible types of progenitor, R Coronae Borealis-type stars and dwarf novae, would be useful to indicate whether there is any dust around them which would survive a supernova outburst.  相似文献   

14.
We report preliminary results of our systematic survey for infrared stars in the globular clusters of the Magellanic Clouds. In the course of an ISOCAM survey for AGB stars in the intermediate-age clusters, we have discovered extremely red AGB stars in NGC 419 and NGC 1978. From their colours and luminosities, they are thought to be experiencing intense mass-loss and to be in the final or superwind phase of the AGB evolution. However, they seem to be of somewhat lower luminosity than the corresponding visible AGB stars when only the mid-infrared data are taken into account. This suggests that hitherto unobserved infrared excesses may exist at longer wavelengths. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Abstract— We have investigated the 7.5–13.5 μm spectra of 30 definite or candidate carbon stars. We discuss the discrepancies between properties of SiC grains found in meteorites and the spectral properties of dust emitting in red giant winds, where most of the meteoritic grains are believed to have formed. We have investigated the nature of carbon star SiC and its relationship to meteoritic SiC dust, by using a X2-minimisation routine to fit the observed SiC features with laboratory optical constants that have been published for a variety of SiC samples. All but one of the observed astronomical SiC features are best fitted by α-SiC grains. All but one of the sources with 8–13 μm colour temperatures >1200 K (corresponding to mass-loss rates at the bottom end of the range) are best fitted by α-SiC in pure emission; whereas, all but one of the sources with 8–13 μm colour temperatures <1200 K (corresponding to higher mass-loss rates) are best fitted using self-absorbed α-SiC emission. The four sources whose SiC features are in net absorption (and which have the lowest 8–13 μm colour temperatures and, therefore, presumably the highest mass-loss rates) are also well fitted by self-absorbed α-SiC emission but with higher optical depths. Given that β-SiC is the form most commonly found in meteorites, we have searched for evidence of β-SiC in the circumstellar shells of all these stars. However, our observations provide no unequivocal evidence for the presence of β-SiC around these stars. Other discrepancies between meteoritic SiC grains and astronomical spectra are discussed. The self-absorption that we find in the observed SiC emission features has not previously been taken into account in radiative transfer modeling and so the amount of SiC present in the outflows may have been underestimated in the past.  相似文献   

16.
A simple idealized nonlinear model applicable to long period variable stars has been formulated that assumes the convective envelope ofM giants is composed of giant convection cells, which are comparable in size to the stellar radius. The simplicity of this model essentially constitutes a physical analog to the strong dynamic coupling that occurs if the convective envelope of the star undergoes both modes of motion. As shown implicitly in the time scales associated with these motions, the coupling produces asymmetrical fluctuations of the entire star, the mean velocity of which is comparable to the escape velocity of the star at particular values of the ratio of the pulsation and convection time scales. It is suggested that this can account for the mass loss from late type stars, and the circumstellar dust shells that are associated extensively with long period variables.For critical values of the pulsation and convection time scales, the solutions correspond to the rapid expansion of the entire convective envelope, and is the basis of a new mechanism that simulates the manner in which pulsating stars ballistically accelerate their convective shells to form planetary nebulae.  相似文献   

17.
Copious mass loss on the Asymptotic Giant Branch dominates the late stages of stellar evolution. Maps of extended circumstellar envelopes provide a history of mass loss and trace out anisotropic mass loss. This review concentrates on observations of millimeter wavelength molecular line emission, on high resolution maps of maser emission and on observations of submillimeter, millimeter and radio wavelength continuum emission. Radio continuum observations show that AGB stars are larger at radio than at optical wavelengths. The extended chromospheres indicated by these observations extend to distances from the star large enough for dust to form, thereby initiating mass loss. Molecular line maps have found time-variable mass loss for some stars, including detached shells indicating interrupted mass loss and evidence for a rapid increase in the mass loss rate at the end of the AGB phase. Maps of circumstellar envelopes show evidence of flattening, bipolar outflow and angular variations in both the mass loss rate and the outflow velocity. As stars evolve away from the AGB and planetary nebula formation begins, these structures become more pronounced, and fast bipolar molecular winds are observed. The time scales derived from the dynamical times of these winds and from the expansion rates of the central planetary nebulae are very rapid in some cases, about 100 years, in agreement with the predictions of stellar evolution theory.  相似文献   

18.
We examine the flow from asymptotic giant branch (AGB) stars when along a small solid angle the optical depth resulting from dust is very large. We consider two types of flows. In the first, small cool spots are formed on the surface of slowly rotating AGB stars. Large quantities of dust are expected to be formed above the surface of these cool spots. We propose that if the dust formation occurs during the last AGB phase when the mass-loss rate is high, the dust shields the region above it from the stellar radiation. This leads to both further dust formation in the shaded region and, owing to lower temperature and pressure, the convergence of the stream toward the shaded region, and the formation of a flow having a higher density than its surroundings. This density contrast can be as high as ∼4. A concentration of magnetic cool spots toward the equator will lead to a density contrast of up to a few between the equatorial and polar directions. This process can explain the positive correlation between high mass-loss rate and a larger departure from sphericity in progenitors of elliptical planetary nebulae. In the second type of flow, the high density in the equatorial plane is formed by a binary interaction, where the secondary star is close to, but outside the AGB envelope. The shielding of the radiation by dust results in a very slow and dense flow in the equatorial plane. We suggest this flow as an alternative explanation for the equatorial dense matter found at several hundred astronomical units around several post-AGB binary systems.  相似文献   

19.
We present 50 and 100µm photometry and size information for several main sequence stars surrounded by dust shells. The observations from NASA's Kuiper Airborne Observatory include the Vega-like stars, Beta Pic, Fomalhaut, as well as four stars suggested by Walker and Wolstencroft to belong possibly to the same class. The results of our observations are best interpreted as upper limits to the far-infrared sizes of the dust clouds around all of the stars except Fomalhaut and Beta Pic. We have also fit simple, optically thin models to the Beta Pic data to explore the range of shell parameters consistent with our limits and with previous observations.  相似文献   

20.
Discs around young stars are the sites of planet formation. The first step in this process is the growth of submicron grains to larger sized grains. I will review evidence for dust growth in CS discs, based on ISO and Spitzer infrared spectroscopic observations. Intermediate-mass stars, solar-type stars and even brown dwarfs will be discussed in the context of dust evolution. Furthermore, I will compare objects of several star-forming regions of different ages, and discuss the influence of the stellar parameters and environment on dust evolution, as witnessed by the observed dust characteristics. The main focus lies on what one can learn from 10 micron spectroscopy, the region where most astronomical dust species have important spectral features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号