首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Improved data collection and processing technologies along with the use of high resolution spectral techniques soon will make it possible to obtain estimates of the Kelvin wave amplitude function A(θ), ship speed U, and ship heading α from synthetic aperture radar images of ship wakes. This paper presents a series of methods for deriving additional hull characteristics such as the length L, volume V, and offsets ζ(x,z) from this spectral and surface wave information. The first method estimates the ship length by taking the Fourier transform of the slope amplitude function |kA|. The remaining estimates make use of the hull inversion code developed at the University of Michigan by Wu in 1991. The accuracy of the hull offsets predicted by the code is first determined for various options for solving the linear inversion problem. In this case, both the magnitude and phase of A(θ) are known in addition to the hull draft H. Since the draft is not often known a priori, the accuracy of the code is determined next by predicting the volume of the ship for an approximate though plausible input value of H. Finally, the accuracy of the non-linear inversion problem of obtaining offsets along the entire hull is investigated when only the magnitude but not the phase of A(θ) is known.  相似文献   

3.
In this paper, we describe a high-frequency (HF) radar capable of multifrequency operation over the HF band for dual-use application to ship classification and mapping ocean current shear and vector winds. The radar is based on a digital transceiver peripheral component interconnect (PCI) card family that supports antenna arrays of four to 32 elements with a single computer, with larger arrays possible using multiple computers and receiver cards. The radar makes use of broadband loop antennas for receive elements, and a number of different possibilities for transmit antennas, depending on the operating bandwidth desired. An option exists in the choice of monostatic or multistatic operation, the latter providing the ability to use several transmit sites, with all radar echo signal reception and processing conducted at a single master receiver site. As applications for such a multifrequency radar capability, we show measurement and modeling examples of multiple frequency HF radar cross section (RCS) of ships as an approach to ship target classification. Results of using 32 radar frequencies to measure the fine structure in ocean current vertical shear are also shown, providing evidence of one edge of a 1-3-m deep uniform flow masked at the surface by wind-driven current shear in a different direction. Other applications of current-shear measurements, such as vector wind mapping and volumetric current estimation in coastal waters, are also discussed  相似文献   

4.
In this paper, we assess the capability of a high-frequency surface wave radar (HFSWR) to detect a small fast boat moving behind a ship, the dimensions of which are comparable to the wavelength. We show that, in the HF-band, the scattered field in the shadow region of the large ship is significant enough to induce strong coupling between the two vessels. This results in fluctuations in the radar cross section (RCS) values of the small boat of about 12 dB at 10 MHz, for instance. We also introduce a complete simulation tool to account for the environment and, thus, to be able to simulate real scenes. We have validated these results through anechoic chamber measurements, with two different masking vessels and three different masked ships. The measurements have shown both the low-attenuation results and the RCS fluctuations  相似文献   

5.
Measurements of the sea surface height (SSH) can be carried out with GNSS aboard ships, but data about the static draft and the hydrodynamic squat effect are necessary. This information is often not available or has an insufficient accuracy. In this study, an alternative method based on the GNSS signal-to-noise ratio observations is presented. Using this method, the distance between the water surface and a GNSS antenna can be estimated directly, if corrections of the heave and the ship’s attitude are considered properly. Suitable segments of a 3-month dataset, gathered aboard a ferry ship operating in the German Bight, were analysed. A global optimization approach based on interval analysis was used and all available observations from a segment were analysed in a common adjustment calculation. The resulting SSH was validated with data from a tide gauge station at Heligoland. The mean difference is 4?mm and a standard deviation of the differences of 5.3?cm was found. The SSH for the same GNSS dataset was also derived from a well-established processing based on the comprehensive consideration of ship dynamics. The mean difference with respect to the tide gauge was 2?mm with a slightly smaller standard deviation of 4.0?cm.  相似文献   

6.
Radar backscatter measurements from the ocean were made at 13.9 GHz from Skylab. The radar signal increased rapidly with wind speed over the entire range of winds encountered, and for angles of incidence of30degand larger. Signals observed were normalized to a nominal incidence angle (from values withinpm2degof the nominal) and to a nominal upwind observation direction, using a theoretical model that has been verified as approximately true with aircraft experiments. The wind speed was regressed against the resulting scattering coefficientssigma^{0}and the values ofbetain windpropto sigma^{0beta}were obtained for incident angles of1deg , 17deg , 32deg , 43deg,and50deg, and for vertical, horizontal, and cross polarizations. For the three larger angles,betavaries from 0.3 to 0.6. Observations during the summer and winter Skylab missions were treated separately because of possible differences caused by an accident to the antenna between the two sets of observations. The results are in general agreement with the theory [26] in all cases, with the winter and cross-polarized agreement somewhat better than that for summer like-polarized data. The "objective analysis" method used for determining "surface-truth" winds in the Skylab experiment was tested by comparing results obtained at weather ships (using all other ship reports to produce the analysis) with the observations made by the weather ships themselves. In most cases, the variance about the regression line between objective analysis and weather-ship data actually exceeded that about the regression line between objective analysis and backscattcr data!  相似文献   

7.
S.K. Lee  H. Choi  S. Surendran 《Ocean Engineering》2006,33(17-18):2454-2465
The effects of free-surface waves on the floating structures are of great importance in the offshore industry. Among the six degrees of motions of a surface ship the absence of restoring forces in surge, sway and yaw led to critical situations for moored ships in the recent times. The order of forces in horizontal plane and their exciting frequencies are matters of interest. The resonance with the presence of moored chains led to many accidents in the recent past. The lines in dry conditions may not give good damping and in wet condition they may trigger the system to chaotic motions and jumps. Two different loading conditions of a container ship model are tested with waves in laboratory conditions in two different drafts. The mooring lines are chosen as per scale law and the energy under the response spectrum is determined from the plots. The results give new insights into the movement of a berthed ships subjected to waves. Response of the moored ship to different loading conditions in different water depths are discussed in this paper. The paper gives the order of energy due to first-order and slowly varying movement of a berthed container model in a towing tank.  相似文献   

8.
The work describes an inversion algorithm for HF radar measurement of nondirectional wave spectra using an omnidirectional receive/transmit antenna. Such a radar would be suitable for deployment on a stationary ship or drill rig. In this approach, wave information is extracted from the radar observations by numerically inverting the integral equation representing the backscatter return from the ocean. Test results of this technique applied to data collected using a 25.4-MHz radar installed on a ship have been very positive. For the two measurements collected, there is a high degree of correlation between the radar wave estimates and those of a WAVE-TRACK buoy  相似文献   

9.
The 6 degrees of freedom (DOF) model with a high degree of complexity for capturing ship dynamics is generally able to track the nonlinear and coupling dynamics of ships. However, the 6 DOF model makes challenges in estimating model coefficients and designing the model-based control. Therefore, simplified ship dynamic models within allowed accuracy are essential. This paper simplified the 6 DOF nonlinear dynamic model of ships into two decoupled models including the speed model and the steering model through reasonable assumptions. Those models were tested through maneuvering simulations of a container ship with a 4 DOF dynamic model. Support vector machines (SVM) optimized by the artificial bee colony algorithm (ABC) was used to identify parameters of speed and steering models by analyzing the rudder angle, propeller shaft speed, surge and sway velocities, and yaw rate from simulated data extracted from a series of maneuvers made by the container ship. Comparisons with the first order linear and nonlinear Nomoto models show that the simplified nonlinear steering model can capture more complicated dynamics and performs better. Additionally, comparisons among three different parameter identification methods demonstrate similar identification results but the different performance involving the applicability and effectiveness. SVM optimized by ABC is relatively convenient and effective for parameter identification of ship simplified dynamic models.  相似文献   

10.
Ice, harsh weather, severe cold, and remoteness increase the risks of navigating the Arctic. Robust ships and shipboard systems to support routine operations and effectively respond to accidents and emergency situations are necessary. In spite of these challenges, the cruise ship industry is reportedly preparing to expand its passenger capacity, destinations, and operating season in the Arctic. An examination of the Arctic cruise ship fleet shows that the most capable ships are approaching the end of their service lives and may be replaced during the next decade. A window of opportunity is open for the international community to act on concerns about the safety of cruise ships in Polar Regions by codifying and making mandatory the International Maritime Organization's Guidelines for ships operating in Polar waters. A mandatory code would provide regulatory guidance to ship-builders at a critical point in the process of procuring new Arctic cruise ships and ensure that suitably constructed and outfitted ships would serve Arctic cruisers.  相似文献   

11.
High-frequency (HF) radar systems are remote sensing tools that can be used to measure oceanographic parameters. Problems can occur when using the conventional periodogram (PG) method for computing power spectral estimates from backscattered radar signals. Temporal and spatial inhomogeneities within the radar measurement region can cause distortion in the spectra. This paper describes an instantaneous-frequency (IF) filtering technique that has been developed to measure the first-order modulation contained within the radar signal. Successful removal of this modulation is shown to yield an increased quality and quantity of ocean measurements  相似文献   

12.
High-frequency (HF) radar wave processing is often based on the inversion of the Barrick-Weber equations, introduced in 1977. This theory reaches its limitations if the length of the Bragg-scattering wave raises to the order of the significant waveheight, because some assumptions are no longer met. In this case, the only solution is moving to lower radar frequencies, which is not possible or desirable in all cases. This paper describes work on an empirical solution which intends to overcome this limitation. However, during high sea state, the first-order Bragg peaks sometimes could not be clearly identified which avoids the access to the second-order sidebands. These cases cause problems to the algorithm which have not been solved yet and currently limit the maximum significant waveheight to about the same values as reported for the integral inversion method. The regression parameters of the empirical solution calibrated from the European Radar Ocean Sensing (EuroROSE) data set are constant values for the complete experiment and when applied to the HF radar data they reconstruct the measurements by a colocated wave buoy quite well. When including a radar-frequency-dependent scaling factor to the regression parameters, the new algorithm can also be used at different radar frequencies. The second-order frequency bands used for the empirical solution are sometimes disturbed by radio interference and ship echoes. Investigations are presented to identify and solve these situations  相似文献   

13.
为解决无人船适用海商法存在的问题,促进我国无人船海上运输产业的健康可持续发展,文章从法理的角度阐释国际海事委员会无人船调查问卷中无人船的法律地位、船长和船员的认定以及无人船的碰撞责任,提出无人船适用海商法存在不确定性风险;在海商法领域,无人船的法律地位认定、船长和船员的识别以及船舶碰撞责任的适用仍存在问题,解决上述问题的有效路径是明确无人船的法律地位、将岸基控制人员识别为船员、采用过错责任原则认定无人船的碰撞责任以及合理分配船东与生产者之间的碰撞责任,以合理规避无人船的风险。  相似文献   

14.
High-frequency (HF) radars have been developed to map surface currents offshore by means of land-based stations. Presently available radar systems use frequencies between 25 and 30 MHz and allow a spatial resolution of 1 km and ranges of up to 50 km. This paper reports on the experience with a shipborne radar and discusses problems which arise for the azimuthal resolution on a metal ship, the correction for the ship's speed, and limitations due to pitch-and-roll motions. Current measurements during cruises to the North Atlantic are presented. It has been found that, with the support of the satellite-supported Global Positioning System, the shipborne HF radar can measure surface current velocities with an accuracy of some 5 cm·s-1  相似文献   

15.
The paper summarizes the results of the long-term complex satellite monitoring of the Black and Baltic seas. Data from synthetic aperture radars (SARs) constitute the experimental basis for the investigation of satellite. In addition to radar data, the data of the visible and infrared bands from MODIS Terra/Aqua, MERIS Envisat, Landsat series sensors are used. The features of the manifestation of hydrodynamic processes, submesoscale eddies in particular, in satellite radar and optical images in a period of intense phytoplankton bloom are discussed. A relationship is established between the intensity and duration of the phytoplankton bloom in the regions of observation and the frequency of the appearance of long-lasting wakes behind moving ships in SAR images. These wakes appear as long narrow bright bands of enhanced backscattered signal extending for tens and sometimes hundreds of kilometers. It is proposed to consider the wakes of this type as indicators of the areas and duration of intense phytoplankton bloom. Satellite observations over the Black and Baltic Seas conducted for more than ten years have shown that long-lasting ship wakes are influenced by powerful jet streams, such as those associated with the passage of eddies that leads to shifts and deformations. By comparing the true route of a ship with its wake in the satellite image, it is possible to obtain detailed information about the parameters of currents.  相似文献   

16.
In September 1997, the International Maritime Organization (IMO) adopted an international convention protocol to reduce air pollution from ships, in order to achieve sustainable maritime development. This protocol has been approved by 15 member countries and will be enforced in May 2005. Pollutants emitted from ships, such as nitrogen oxides, volatile organic compounds, sulfur oxides, etc. will be regulated by this convention through ship inspections and issuance of certificates. Ships belonging to maritime countries such as Taiwan, which sail around the world and berth in commercial ports, must obey this convention. This study has investigated possible strategies, which may be adopted by maritime countries to conform to this IMO convention in order to reduce the air pollution from ships. A sea-going ship must prepare EIAPP and IAPP certificates for inspection by port-state-control officials, when the ship is anchored at a maritime port. These port-state-control officials may also require the continuous detection and sampling of a ship's emissions, while it is berthed at the port. Legislative support is necessary for successful implementation of these safeguards. It is suggested, therefore, that the administration of both navigational and environmental protection, in maritime countries, cooperate in the revision of relevant federal laws, to implement the provisions of the MARPOL 73/78/97 convention; in this way, the air pollution from ships can be effectively controlled. Installation of advanced detection equipment can effectively detect any ships’ violations of air pollution regulations. The Harbor Affairs’ Bureau should also establish a database of air pollution inspections for ships berthed within their harbor, requiring that ships’ equipment comply with the requirements of the MARPOL convention, for the reduction of air pollution.  相似文献   

17.
一种新的用于极化SAR图像船只检测的散射相似性测度   总被引:1,自引:0,他引:1  
本文提出了一种新的用于极化合成孔径雷达(SAR)海上船只目标检测的测度。首先利用散射相似性参数研究船只与海杂波散射机制的差异。基于这些差异,提出了一种新的船只检测测度,该测度能够有效区分船只目标和海杂波。然后提出了利用核密度估计(KDE)方法对该测度进行建模的方法。基于统计模型,实现了自适应恒虚警率(CFAR)的检测方案。本文利用多景C波段RADARSAT-2极化SAR(Pol-SAR)数据上进行实验,系统分析了所提出测度的海杂波拟合性能与船只检测性能,并与两个经典的极化测度进行了比较,实验和比较结果证明了所提的测度的可行性。  相似文献   

18.
Directional wave information from the SeaSonde   总被引:1,自引:0,他引:1  
This paper describes methods used for the derivation of wave information from SeaSonde data, and gives examples of their application to measured data. The SeaSonde is a compact high-frequency (HF) radar system operated from the coast or offshore platform to produce current velocity maps and local estimates of the directional wave spectrum. Two methods are described to obtain wave information from the second-order radar spectrum: integral inversion and fitting with a model of the ocean wave spectrum. We describe results from both standard- and long-range systems and include comparisons with simultaneous measurements from an S4 current meter. Due to general properties of the radar spectrum common to all HF radar systems, existing interpretation methods fail when the waveheight exceeds a limiting value defined by the radar frequency. As a result, standard- and long-range SeaSondes provide wave information for different wave height conditions because of their differing radar frequencies. Standard-range SeaSondes are useful for low and moderate waveheights, whereas long-range systems with lower transmit frequencies provide information when the waves are high. We propose a low-cost low-power system, to be used exclusively for local wave measurements, which would be capable of switching transmit frequency when the waveheight exceeds the critical limit, thereby allowing observation of waves throughout the waveheight range.  相似文献   

19.
A parametric study of wave loads on trimaran ships traveling in waves   总被引:3,自引:0,他引:3  
In this paper, we present a spectral analysis based on wave loads to select suitable side-hull arrangements for a trimaran ship traveling in waves. Neglecting the steady flow effect, the three-dimensional source-distribution method, using a pulsating source potential incorporating the panel method, is adopted to solve the corresponding hydrodynamic coefficients. The significant values for wave loads, including shear forces, bending moments, and torsion moments at different locations on the main hull and connected deck with respect to different staggers and clearances, are derived by the spectral analysis. Several ship speeds and wave headings are also considered for comparison. This study offers more information for selecting the side-hull arrangement from the viewpoint of wave loads on trimaran ships, which may be regarded as helpful references for seakeeping design of these types of ships.  相似文献   

20.
Seakeeping qualities are one of the most important aspects for passenger ships, since a collateral effect of seakeeping, the seasickness, can avoid the use of ships and ferries among passengers who can choose a different way of transport. Therefore, it is important for ship designers and ship owners to predict and evaluate the seasickness effects at the design stage.In this paper, a review of the seasickness causes and effects is made, and a mathematical model that includes several human factors is proposed. This model is applicable especially in big passenger ships where different kind of spaces or activities for the passengers can be found inside the ship.The way to present the large amount of information obtained in seakeeping calculations is important, and it is useful to detect the most conflictive parts of the ship's general arrangement. Calculations for an example ferry are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号