首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The lower Nanaimo Group was deposited in the (forearc) Georgia Basin, Canada and records the basin's initiation and early depositional evolution. Nanaimo Group strata are subdivided into 11 lithostratigraphic units, which are identified based on lithology, paleontology, texture and position relative to both the basal nonconformity and to each other. Significant topography on the basal nonconformity, however, has resulted in assignment of lithostratigraphic units that are not time correlative, and hence, cannot reliably be used to accurately reconstruct basin evolution. Herein, we present a sequence stratigraphic framework for lower Nanaimo Group strata in the Comox Sub-Basin (northern Georgia Basin) that integrates both facies analysis and maximum depositional ages (MDAs) derived from detrital zircon. This stratigraphic framework is used to define significant sub-basin-wide surfaces that bound depositional units and record the evolution of the basin during its early stages of development. Seven distinct depositional phases are identified in the lower 700 m of the lower Nanaimo Group. Depositional phases are separated by marine flooding surfaces, regressive surfaces, or disconformities. The overall stratigraphy reflects net transgression manifested as an upwards transition from braided fluvial conglomerates to marine mudstones. Transgression was interrupted by periods of shoreline progradation, and both facies analysis and MDAs reveal a disconformity in the lowermost part of the Nanaimo Group in the Comox Sub-Basin. Stratigraphic reconstruction of the Comox Sub-Basin reveals two dominant depocenters (along depositional strike) for coarse clastics (sandstones and conglomerates) during early development of the Georgia Basin. The development and position of these depocenters is attributed to subduction/tectonism driving both subsidence in the north-northwest and uplift in the central Comox Sub-Basin. Our work confirms that in its earliest stages of development, the Georgia Basin evolved from an underfilled, ridged forearc basin that experienced slow and stepwise drowning to a shoal-water ridged forearc basin that experienced rapid subsidence. We also propose that the Georgia Basin is a reasonable analogue for ridged forearc basins globally, as many ridged forearcs record similar depositional histories during their early evolution.  相似文献   

2.
3.
Investigation of a >6-km-thick succession of Cretaceous to Cenozoic sedimentary rocks in the Tajik Basin reveals that this depocentre consists of three stacked basin systems that are interpreted to reflect different mechanisms of subsidence associated with tectonics in the Pamir Mountains: a Lower to mid-Cretaceous succession, an Upper Cretaceous–Lower Eocene succession and an Eocene–Neogene succession. The Lower to mid-Cretaceous succession consists of fluvial deposits that were primarily derived from the Triassic Karakul–Mazar subduction–accretion complex in the northern Pamir. This succession is characterized by a convex-up (accelerating) subsidence curve, thickens towards the Pamir and is interpreted as a retroarc foreland basin system associated with northward subduction of Tethyan oceanic lithosphere. The Upper Cretaceous to early Eocene succession consists of fine-grained, marginal marine and sabkha deposits. The succession is characterized by a concave-up subsidence curve. Regionally extensive limestone beds in the succession are consistent with late stage thermal relaxation and relative sea-level rise following lithospheric extension, potentially in response to Tethyan slab rollback/foundering. The Upper Cretaceous–early Eocene succession is capped by a middle Eocene to early Oligocene (ca. 50–30 Ma) disconformity, which is interpreted to record the passage of a flexural forebulge. The disconformity is represented by a depositional hiatus, which is 10–30 Myr younger than estimates for the initiation of India–Asia collision and overlaps in age with the start of prograde metamorphism recorded in the Pamir gneiss domes. Overlying the disconformity, a >4-km-thick upper Eocene–Neogene succession displays a classic, coarsening upward unroofing sequence characterized by accelerating subsidence, which is interpreted as a retro-foreland basin associated with crustal thickening of the Pamir during India–Asia collision. Thus, the Tajik Basin provides an example of a long-lived composite basin in a retrowedge position that displays a sensitivity to plate margin processes. Subsidence, sediment accumulation and basin-forming mechanisms are influenced by subduction dynamics, including periods of slab-shallowing and retreat.  相似文献   

4.
景可  焦菊英  李林育  张世杰 《地理研究》2010,29(7):1163-1170
输沙量、侵蚀量与泥沙输移比的流域尺度转换研究是当前流域侵蚀产沙研究领域的前沿课题,旨在通过尺度转换理论将坡面小区试验研究成果转换到流域的更大范围。以赣江流域实测输沙量和计算侵蚀量与泥沙输移比数据为基础,探讨了该流域3个变量的流域尺度关系,进而研究分析了3个变量尺度转换的可能性。3个变量与流域面积的关系散点图和相关方程都反映了这3者与流域面积不存在明显的相关关系,相悖于前人反比关系的结论。文章还阐述了流域面积的内涵及输沙量、侵蚀量和输移比的影响因素与流域面积的关系,发现3个变量的影响因素与流域面积不存在尺度效应。由此推断在赣江流域输沙量、侵蚀量和泥沙输移比实现尺度转换存在的可能性不大。这一研究结论是否成立或是否具有普遍性意义还有待于更多流域的研究成果来进一步证实。  相似文献   

5.
6.
Fault throw gradients create transverse folding, and this can influence accommodation creation and sedimentary routing and infill patterns in extensional half-graben basin. The Fanja half-graben basin (Oman) offers an excellent outcrop of an alluvial fan succession displaying cyclical stacking and basin-scale growth-fold patterns. These unique conditions allow for an investigation of fault-timing and accommodation development related to fault-transverse folding. Our study combines geological mapping, structural analysis, sedimentary logging and correlation, and bulk mineralogical compositions. Mapping reveals that the basin is bounded by a regional-scale fault, with local depocentres changing position in response to transverse syncline and anticline development ascribed to fault-displacement gradients. The alluvial Qahlah Formation (Late Cretaceous) is unconformably overlying the Semail Ophiolite, and is in turn overlain by the marine Jafnayn Formation (Late Palaeocene). Facies and stratigraphic analysis allows for subdivision of the Qahlah Formation into four informal units, from base to top: (i) laterite in topographic depressions of the ophiolite, (ii) greenish pebbly sandstones, deriving from axially draining braided streams deposited in the low-relief half-graben basin. This green Qahlah grades vertically into the red Qahlah, formed by alluvial fanglomerates and floodplain mudstones, with drainage patterns changing from fault-transverse to fault-parallel with increasing distance to the main fault. The red Qahlah can be divided into (iii) the Wadi al Theepa member, found in a western basin depocentre, with higher immaturity and sand: mud ratio, suggesting a more proximal source, and (iv) the Al Batah member, located in the eastern part of the basin. The latter shows better sorting, a lower sand: mud ratio, and more prominent graded sub-units. It also shows eastward expansion from an orthogonal monocline, ascribed to accommodation developed in a relay ramp. Changes in sedimentary facies and depositional patterns are consistent with differential mineralogical composition. The Green Qahlah is composed of quartz and lithic mafic rock fragments, sourced from the ophiolite and schists of the metamorphic basement. The Red Qahlah is composed of chert and kaolinite sourced from the Hawasina Nappe succession in the footwall of the master fault. These changes in source area are linked to unroofing of fault-footwalls and domal structures during the extensional collapse of the Semail Ophiolite. The novelty of this study resides in linking sedimentology and fault-displacement events controlling fault-perpendicular folding, and its influence on depocentre generation and stratigraphic architecture. This is an approach seldom considered in seismic analysis, and rarely analysed in outcrop studies, thus placing the results from this study among the key outcrop-based contributions to the field.  相似文献   

7.
Clinoforms are basinward-dipping and accreting palaeo-bathymetric profiles that record palaeo-environmental conditions and processes; thus, clinothems represent natural palaeo-archives. Here, we document shelf-edge scale clinoform sets which prograded through the entire width of an epicontinental marine basin (ca. 400 km), eventually encroaching onto the opposite basin flank, where they started to prograde upslope and landward, in defiance of gravity (“upslope-climbing clinoforms”). The giant westward-prograding Eridanos muddy shelf-edge clinothem originated from the Baltic hinterland in the Oligocene and achieved maximum regression in the Early Pleistocene, on the UK Central Graben (CG) and Mid North Sea High (MNSH), after crossing the whole North Sea mesopelagic depocentre and causing near complete basin infill. Here we integrate well and seismic data through the MNSH and CG and examine the Eridanos final heyday and demise, identifying five clinothem complexes (A1, A2, A3, B and C) and six depositional sequence boundaries (SB1 to SB6) in the Miocene-Recent section. Tectonic and climatic events drove the recent evolution of this system. Early Pleistocene climate cooling, in particular, resulted in a stepwise increase in sediment supply. This climaxed in the earliest Calabrian, following a likely Eburonian eustatic fall (=SB3) when the Eridanos clastic wedge was restructured from a 100–300 m thick compound shelf-edge and delta system to a “hybrid” shelf-edge delta at sequence boundary SB3 (ca. 1.75 Ma). In the ca. 40 kyr that followed SB3, a progradation rate peak (>1,000 m/kyr) is associated with clinoforms starting to accrete upslope, onto the east-dipping slope between CG and MNSH. This “upslope-climbing clinoform” phase was quickly followed by the maximum regression and final retreat of the Eridanos system in the Early Calabrian (=SB4), likely as the result of climate-driven changes in the Baltic hinterland and/or delta auto-retreat. To our knowledge, this contributions represents the first documentation of “upslope-climbing clinoforms” recorded in the stratigraphic record.  相似文献   

8.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   

9.
Land use/cover change (LUCC) models are helpful tools for analyzing driving forces and processes of land use changes, assessing ecological impacts of land use change and decision-making for land use planning. However, no single model is able to capture all the essential key processes to explore land use change at different spatial-temporal scales and make a full assessment of driving factors and macro-ecological impacts. Taken Ganzhou District as a case study, this paper describes an integrated analysis (IA) approach by combining with system dynamics (SD) model, the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model and landscape indices method to analyze land use dynamics at different spatial-temporal scales. The SD model was used to calculate and predict demands for different land use types at the macro-scale as a whole during 2000–2035. The LUCC process was simulated at a high spatial resolution with the spatial consideration of land use spatial policies and restrictions to satisfy the balance between land use demand and supply by using the CLUE-S model, and Kappa values of the map simulation are 0.86 and 0.81 in 2000 and 2005, respectively. Finally, we evaluated the macro-ecological effect of LUCC and optimized scenario managements of land use by using landscape indices method. The IA approach could be used for better understanding the complexity of land use change and provide scientific support for land use planning and management, and the simulation results also could be used as a source data for scenario analysis of different hydrological and ecological processes based on different underlying surface of LUCC.  相似文献   

10.
Knowledge of the permeability structure of fault‐bearing reservoir rocks is fundamental for developing robust hydrocarbon exploration and fluid monitoring strategies. Studies often describe the permeability structure of low porosity host rocks that have experienced simple tectonic histories, while investigations of the influence of faults with multiple‐slip histories on the permeability structure of porous clastic rocks are limited. We present results from an integrated petrophysical, microstructural, and mineralogical investigation of the Eumeralla Formation (a tight volcanogenic sandstone) within the hanging wall of the Castle Cove Fault which strikes 30 km NE–SW in the Otway Basin, southeast Australia. This late Jurassic to Cenozoic‐age basin has experienced multiple phases of extension and compression. Core plugs and thin sections oriented relative to the fault plane were sampled from the hanging wall at distances of up to 225 m from the Castle Cove Fault plane. As the fault plane is approached, connected porosities increase by ca. 10% (17% at 225 m to 24% at 0.5 m) and permeabilities increase by two orders of magnitude (from 0.04 mD at 225 m to 1.26 mD at 0.5 m). Backscattered Scanning Electron Microscope analysis shows that microstructural changes due to faulting have enhanced the micrometre‐scale permeability structure of the Eumeralla Formation. These microstructural changes have been attributed to the formation of microfractures and destruction of original pore‐lining chlorite morphology as a result of fault deformation. Complex deformation, that is, formation of macrofractures, variably oriented microfractures, and a hanging wall anticline, associated with normal faulting and subsequent reverse faulting, has significantly influenced the off‐fault fluid flow properties of the protolith. However, despite enhancement of the host rock permeability structure, the Eumeralla Formation at Castle Cove is still considered a tight sandstone. Our study shows that high‐resolution integrated analyses of the host rock are critical for describing the micrometre‐scale permeability structure of reservoir rocks with high porosities, low permeabilities, and abundant clays that have experienced complex deformation.  相似文献   

11.
U- and Th-series disequilibria observed in a sequence of infill sediments from Praia da Rocha, southern Portugal, were used in combination with geochemical and particle size data to investigate sediment provenance with a view to resolving the late Quaternary weathering and erosion history of the Algarve region, and the stratigraphy of coastal karstic exposures of the Faro/Quarteira (FQ) formation. The red infill units can be distinguished from the brown and buff units on the basis of their lower residual U- and Th-concentrations, their differing post-depositional histories (as revealed by U- and Th-series disequilibria in sequentially extracted sediment phases), and their greater degree of sediment processing. Hence, the buff and brown infill units appear to be derived locally from weathering of the Miocene limestone whilst the red infill may be linked to large-scale mass movement of the FQ formation from further inland, but south of Silves, during the Late Pleistocene. This sequence of events confirms a close association between the formation of karst topography and infilling by gravitational slumping, debris flow and fluvial activity, and, hence, accounts for the complex (three-stage) sediment provenance of the infill material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号