首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sandy clinothems are of interest as hydrocarbon reservoirs but there is no proven, economic, clinothem reservoir in the Norwegian Barents Sea. We used high-resolution, 2D and 3D seismic, including proprietary data, to identify a previously untested, Barremian, clinoform wedge in the Fingerdjupet Subbasin (FSB). Data from recent well 7322/7-1 plus seismic have been used to characterize this wedge and older Lower Cretaceous clinoforms in the FSB. In the latest Hauterivian – early Barremian, during post-rift tectonic quiescence, shelf-edge clinoforms (foreset height > 150 m) prograded into an under-filled basin. Increased sediment input was related to regional uplift of the hinterland (northern Barents Shelf). Early Barremian erosion in the north-western FSB and mass wasting towards the SE were followed by deposition of delta-scale (<80 m high), high-angle (c. 8°) clinoform sets seaward of older shelf-edge clinoforms. This may be the local expression of a regional, early Barremian, regressive event. By the close of the Barremian, clinoforms had prograded, within a narrow, elongate basin, across the FSB and towards the uplifted Loppa High. A seismic wedge of high-angle (10–12°), low-relief, delta-scale (25–80 m) clinoform sets occurs between shelf-edge clinoforms to the NW and the uplifted area to the SE. Well 7322/7-1, positioned on a direct hydrocarbon indicator, <1 km NNW of the high-angle, low-relief, delta-scale clinoforms, found upward coarsening siltstone-cycles linked to relative sea-level fluctuations on a marine shelf. Sand may have accumulated, offshore from the well, in high-angle, low-relief foresets of the delta-scale clinothems (which are typical geometries elsewhere interpreted as ‘delta-scale, sand-prone subaqueous clinoforms’). Deposition was controlled by the paleosurface, storms and longshore currents on an otherwise mud-dominated shelf. The study highlights challenges associated with exploration for sandstone reservoirs in seismic wedges on an outer shelf.  相似文献   

2.
Seismic-reflection data show that most deepwater (>200 m water depth) basins are filled by sand and mud dispersed across clinoformal geometries characterized by gently dipping topsets, steeper foresets and gently dipping bottomsets. However, the entire geometry of these ubiquitous clinoforms is not always recognized in outcrops. Sometimes the infill is erroneously interpreted as “layer cake” or “ramp” stratigraphy because the topset-foreset-bottomset clinoforms are not well exposed. Regional 2-D seismic lines show clinoforms in the Lower to Middle Jurassic Challaco, Lajas, and Los Molles formations in S. Neuquén Basin in Argentina. Time equivalent shelf, slope and basin-floor segments of clinoforms are exposed, and can be walked out in hundreds of metres thick and kilometres-wide outcrops. The studied margin-scale clinoforms are not representing a continental-margin but a deepwater shelf margin that built out in a back-arc basin. Lajas-Los Molles clinoforms have been outcrop-mapped by tracing mudstones interpreted as flooding surfaces on the shelf and abandonment surfaces (low sedimentation rate) in the deepwater basin. The downslope and lateral facies variability in the outcrops is also consistent with a clinoform interpretation. The Lajas topset (shelf) is dominated by fluvial and tidal deposits. The shelf-edge rollover zone is occasionally occupied by a 40–50-m-thick coarse-grained shelf-edge delta, sometimes incising into the underlying slope mudstones, producing oblique clinoforms expressing toplap erosion on seismic. A muddy transgressive phase capping the shelf-edge deltas contains tidal sandbodies. Shelf-edge deltas transition downslope into turbidite- and debris flow-filled channels that penetrate down the mud-prone Los Molles slope. At the base-of-slope, some 300m below the shelf edge, there are basin-floor fan deposits (>200 m thick) composed of sandy submarine-fan lobes separated by muddy abandonment intervals. The large-scale outcrop correlation between topset–foreset–bottomset allows facies and depositional interpretation and sets outcrop criteria recognition for each clinoform segment.  相似文献   

3.
Utilizing two outcrop data sets with dip direction exposures of shallow-water (tens of meters) deltaic clinoforms, this paper quantifies sedimentary facies proportions and clinoform lengths and gradients, and links process regimes to delta clinoform dimensions. Both data sets are from foreland basins, the Cretaceous Chimney Rock Sandstone of the Rock Springs Formation from the US Western Interior, and the Eocene Brogniartfjellet Clinoform Complex 8 of the Battfjellet Formation from the Central Basin of Spitsbergen. Sedimentary facies indicate presence of both river- and wave-dominated clinothems in each data set. Facies characteristics and distribution implies that river-dominated clinothem progradation was primarily driven by deposition from weak hyperpycnal flow turbidity currents across the clinoforms, and minor slumps. Wave-dominated clinothems were constructed by wave processes rather than alongshore currents, and are also progradational subaerial clinoforms, with one exception, where the formation of a compound subaqueous clinoform set indicates erosion and sediment bypass above the wave base. Sediment distribution and lithological heterogeneity in the river-dominated clinothems is controlled by individual hyperpycnal flow events or mouth-bar collapse events, and thus by self-organization and minimal reworking that results in a heterogeneity that is difficult to predict (high entropy). The efficient reworking of river-derived sediments in wave-dominated clinothems results in predictable lithological sediment partitioning (low entropy). Clinoform dimension analyses show that although of similar sediment caliber, river-dominated clinoforms in both data sets are on average 3–4 times steeper and 3–4 times shorter than the wave-dominated clinoforms, with mean gradients of ca 4 degrees and ca 1 degree, respectively, and mean lengths of 150–230 m and 640–760 m. These results require corroboration from additional data sets, but do suggest that river- and wave-dominated delta clinoforms are likely to have distinct downdip extents (lengths) and gradients for given clinoform heights. Clinoform shape can thus be a method for differentiating ancient river- vs. wave-dominated deltaic clinoforms, in addition to their sedimentary facies, biogenic features and sandstone maturity, and helpful when incorporated into reservoir models.  相似文献   

4.
In southeastern Brazil, the Serra do Mar coastal mountain range blocks the sediment influx from arriving at a ca. 1,500 km long continental margin comprising Santos and Pelotas basins. Despite this deprivation, the margin accumulated a ca. 1 km thick sedimentary succession since the Mid-Miocene. Examination of seismic reflection and oceanographic data indicates that shelf-margin clinoform formation exhibits a regional variability, with major sigmoidal clinoforms developed in the transitional area between both basins. Laterally, poorly developed oblique clinoforms constitute isolated depocenters along the shelf margin. The continuous clinoform development in the transitional area is attributed to the major influence on sediment transport patterns of several ocean bottom currents flowing along the margin, such as the Brazil Coastal Current, the Brazil Current and the Intermediate Water Brazil Current. These currents erode, transport and distribute sediments across the shelf break and upper slope from distant sediment sources located either north or south of the study area. The progressive southward strengthening of the Brazil Current could be responsible for a major southward sediment redistribution from the northern Campos Basin, and/or for sediment entrainment from northward-induced transport by the Brazil Coastal Current, originally derived from the De la Plata Estuary. In the transition between Santos and Pelotas basins, the Intermediate Water Brazil Current splits forming the Santos Bifurcation, allowing for a continuous depositional process and clinoform generation. We suggest that ocean bottom currents may shape other shelf-edge ‘contouritic clinoforms’ in continental margins mainly constructed by along-strike sediment transport largely driven by long-term geostrophic currents.  相似文献   

5.
The Permian Ecca Group of the Karoo Basin, South Africa preserves an extensive well-exposed siliciclastic basin floor, slope and shelf-edge delta succession. The Kookfontein Formation includes multiple sedimentary cycles that display clinoform geometries and are interpreted to represent the deposits of a slope to shelf succession. The succession exhibits progradational followed by aggradational stacking of deltaic cycles that is related to a change in shelf-edge trajectory, and lies within two depositional sequences. Sediment was transferred to the slope via overextension of deltas onto and over the shelf edge, resulting in failure and re-adjustment of local slope gradients. The depositional facies and architecture of the Kookfontein Formation record the change from a bypass- to accretion-dominated margin, which is interpreted to reflect a decrease in sediment transport efficiency as the slope gradient decreased, slope length increased and shelf-edge trajectory rose. During this time the delivery system changed from point-sourced basin-floor fans fed by slope channels to starved basin-floor with sand-rich slope clinoforms. This is an example of a progradational margin in which the younger slope system is interpreted to be of a different style to the older slope system that fed the underlying sand-rich basin floor fans.  相似文献   

6.
The Miocene marine basins of Central and Southeast Europe, once comprising the Paratethys Sea, were gradually filled with sediments during the Neogene and turned to be the catchment area of the proto-Danube and finally that of the modern Danube. Seismic data from various parts of the large Danube catchment area show that these several hundred meter deep basins were filled by lateral accretion of river-transported sediments, appearing as shelf edge scale clinoform sets in seismic profiles. The direction of shelf edge progradation is NW to SE (N to S, W to E) in each basin, except for the Dacian basin where NE to SW direction prevails. The age of the clinoform sets is generally younging downstream: 19–18 Ma in the North Alpine Foreland basin, 14–13 Ma in the Vienna basin, 10–9 Ma in the Danube (Kisalföld) basin, 8.6–4 Ma in the Central Pannonian basin (Alföld), ?9–5 Ma in the Dacian basin, and 6–0 Ma in the Euxinian (Black Sea) basin. In spite of this geographical and temporal pattern, only the Danube (Kisalföld) and the western and central part of the Central Pannonian basin were filled by the proto-Danube shelf accretion. Formation of the Danube, as a longitudinal river of the Alpine foreland that gradually elongated to the east and followed the retreating shoreline of the Paratethys, most probably took place at the beginning of the Late Miocene, ca. 11 Ma ago, thus the Early and Middle Miocene shelf advance in the North Alpine Foreland and Vienna basins, respectively, cannot be attributed to a „paleo-Danube”. The clinoform systems of the Dacian basin are coeval with those of the upstream Central Pannonian basin, indicating that by the time the Danube sedimentary system reached the Dacian basin, it was already a shallow basin. The vast clinoforms of the northwestern Euxinian shelf also significantly overlap in age with the Pannonian basin ones; only the <4 Ma part of the shelf accretion can be attributed to the Danube sensu stricto.  相似文献   

7.
Late Miocene lacustrine clinoforms of up to 400 m high are mapped using a 1700 km2 3‐D seismic data set in the Dacian foreland basin, Romania. Eight Meotian clinoforms, constructed by sediment from the South Carpathians, prograded around 25 km towards southwest. The individual clinothems show thin (10–60 m thick), if any, topsets, disrupted foresets and highly aggradational bottomsets. Basin‐margin accretion occurred in three stages with changing of clinoform heights and foreset gradients. The deltaic system prograded into an early‐stage deep depocenter and contributed to high gradient clinoforms whose foresets were dominated by closely (100–200 m) spaced 1.5–2 km wide V‐shaped sub‐lacustrine canyons. During intermediate‐stage growth, 2–4 km wide canyons were dominant on the clinoform foresets. From the early to intermediate stages, the lacustrine shelf edges were consistently indented. The late‐stage outbuilding was characterised by smaller clinoforms with smoother foresets and less indentation along the shelf edge. Truncated and thin topsets persisted through all three stages of clinoform evolution. Nevertheless, the resulting long‐term flat trajectory shows alternating segments of forced and low‐amplitude normal regressions. The relatively flat trajectory implies a constant base level over time and was due to the presence of the Dacian–Black Sea barrier that limited water level rise by spilling to the Black Sea. Besides the characteristic shelf‐edge incision of the thin clinoform topsets and the resultant sediment bypass at the shelf edge, the prolonged regressions of the shelf margin promoted steady sediment supply to the basin. The high sediment supply at the shelf edges generated long‐lived slope sediment conduits that provided sustained sediment transport to the basin floor. Clinothem isochore maps show that large volumes of sediment were partitioned into the clinoform foresets, and especially the bottomsets. Sediment predominantly derived from frequent hyperpycnal flows contributed to very thick, ca. 300–400 m in total, bottomsets. Decreasing subsidence over time from the foredeep resulted in diminishing accommodation and clinoform height, reduced slope channelization and smoother slope morphology.  相似文献   

8.
Clinoforms with a range of scales are essential elements of prograding continental margins. Different types of clinoforms develop during margin growth, depending on combined changes in relative sea level, sediment supply and oceanographic processes. In studies of continental margin stratigraphy, trajectories of clinoform ‘rollover’ points are often used as proxies for relative sea-level variation and as predictors of the character of deposits beyond the shelf-break. The analysis of clinoform dynamics and rollover trajectory often suffers from the low resolution of geophysical data, the small scale of outcrops with respect to the dimensions of clinoform packages and low chronostratigraphic resolution. Here, through high-resolution seismic reflection data and sediment cores, we show how compound clinoforms were the most common architectural style of margin progradation of the late Pleistocene lowstand in the Adriatic Sea. During compound clinoform development, the shoreline was located landward of the shelf-break. It comprised a wave-dominated delta to the west and a barrier and back-barrier depositional system in the central and eastern area. Storm-enhanced hyperpycnal flows were responsible for the deposition of a sandy lobe in the river mouth, whereas a heterolithic succession formed elsewhere on the shelf. The storm-enhanced hyperpycnal flows built an apron of sand on the slope that interrupted an otherwise homogeneous progradational mudbelt. Locally, the late lowstand compound clinoforms have a flat to falling shelf-break trajectory. However, the main phase of shelf-break bypass and basin deposition coincides with a younger steeply rising shelf-break trajectory. We interpret divergence from standard models, linking shelf-break trajectory to deep-sea sand deposition, as resulting from a great efficiency of oceanographic processes in reworking sediment in the shelf, and from a high sediment supply. The slope foresets had a large progradational attitude during the late lowstand sea-level rise, showing that oceanographic processes can inhibit coastal systems to reach the shelf-edge. In general, our study suggests that where the shoreline does not coincide with the shelf-break, trajectory analysis can lead to inaccurate reconstruction of the depositional history of a margin.  相似文献   

9.
Two nested clinoform set types of different scales and steepness are mapped and analysed from high-resolution seismic data. Restoration of post-depositional faulting reveals a persistent pattern of small-scale, high-angle clinoforms contained within platform-scale, low-angle clinothems, showing a combined overall progradational depositional system. The large clinoforms lack a well-defined platform edge, and show a gradual increase in dip from topset to foreset. A consistent recurring stratal pattern is evident from the architecture, and is considered a result of interplay between relative sea-level change and autocyclic switching of sediment delivery focal points that brought sediment to the platform edge. This un-interrupted succession records how intra-shelf platforms prograde. Quantitative clinoform analysis may assist in determining the most influential depositional factors. Post-depositional uplift and erosion requires restoration with re-burial to maximum burial depth. Backstripping, decompaction and isostatic correction was performed assuming a range of lithologic compositions, as no wells test the lithology. Nearby wells penetrate strata basinward of the clinoforms, proving mudstone content above 50%, which in turn guide restoration values. Typical restored platform heights are 250–300 m, with correspondingly sized platform-scale clinoform heights. Typical large-scale clinoform foreset dip values are 1.3°–2.4°. Small-scale clinothems are typically 100 m thick, with restored foreset dip angles at 4.4° - > 10°. The results suggest that intrashelf platform growth occurs in pulses interrupted by draping of strata over its clinoform profile. The resultant architecture comprises small-scale clinoforms nested within platform-scale clinothems.  相似文献   

10.
Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis.  相似文献   

11.
《Basin Research》2018,30(4):671-687
The Mesozoic shelf margin in the Mahajanga Basin, northwest Madagascar, provides an example where inherited palaeobathymetry, coupled with sea‐level changes, high sediment supply and fluctuations in accommodation influenced the stacking patterns and geometry of clinoforms that accreted onto a passive rifted margin. Two‐dimensional (2D) seismic profiles are integrated with existing field data and geological maps to study the evolution of the margin. The basin contains complete records of transgression, highstand, regression and lowstand phases that took place from Jurassic to Cretaceous. Of particular interest is the Cretaceous, Albian to Turonian (ca. 113‐93 Ma), siliciclastic shelf margin that prograded above a drowned Middle Jurassic carbonate platform. The siliciclastic phase of the shelf margin advanced ca. 70 km within ca. 20 My, and contains 10 distinct clinoforms mapped along a 2D seismic reflection data set. The clinoforms show a progressive decrease in height and slope length, and a fairly constant slope gradient through time. The successive shelf edges begin with a persistent flat to slightly downward‐directed shelf‐edge trajectory that changes to an ascending trajectory at the end of clinoform progradation. The progressive decrease in clinoform height and slope length is attributed to a decrease in accommodation. The prograding margin is interpreted to have formed when siliciclastic input increased as eastern Madagascar was uplifted. This work highlights the importance of sediment supply and inherited palaeobathymetry as controls on the evolution of shelf margins and it provides a new understanding of the evolution of the Mahajanga Basin during the Mesozoic.  相似文献   

12.
Shelf-margin clinoforms and prediction of deepwater sands   总被引:1,自引:1,他引:1  
Early Eocene successions from Spitsbergen and offshore Ireland, showing well‐developed shelf‐margin clinoforms and a variety of deepwater sands, are used to develop models to predict the presence or absence of turbidite sands in clinoform strata without significant slope disturbance/ponding by salt or mud diapers. The studied clinoforms formed in front of narrow to moderate width (10–60 km) shelves and have slopes, 2–4°, that are typical of accreting shelf margins. The clinoforms are evaluated in terms of both shelf‐transiting sediment‐delivery systems and the resultant partitioning of the sand and mud budget along their different segments. Although this sediment‐budget partitioning is controlled by sediment type and flux, shelf width and gradient, process regime on the shelf and relative sea‐level behaviour, the most tell‐tale or predictive signs in the stratigraphic record appear to be (1) sediment‐delivery system type, (2) degree of shelf‐edge channelling and (3) character of shelf‐edge trajectory through time. The clinoform data sets from the Porcupine Basin (wells and 3‐D seismic) and from the Central Basin on Spitsbergen (outcrops) suggest that river‐dominated deltas are the most efficient delivery systems for dispersing sand into deep water beyond the shelf‐slope break. In addition, low‐angle or flat, channelled shelf‐edge trajectories associate with co‐eval deepwater slope and basin‐floor sands, whereas rising trajectories tend to associate with muddy slopes and basin floors. Characteristic features of the shelf‐edge, slope and basin‐floor segments of clinoforms for these trajectory types are documented. Seismic lines along the slope to basin‐floor transects tend to show apparent up‐dip sandstone pinchouts, but most of these are likely to be simply sidelap features. Dip lines aligned along the axes of sandy fairways show that stratigraphic traps are unlikely, unless slope channels become mud‐filled or are structurally partitioned. Another feature that is prominent in the data sets examined is the lack of slope onlap. During the relative rise of sea level back up to the shelf, the clinoform slopes are generally mud‐prone and they are characteristically aggradational.  相似文献   

13.
Exhumed basin margin‐scale clinothems provide important archives for understanding process interactions and reconstructing the physiography of sedimentary basins. However, studies of coeval shelf through slope to basin‐floor deposits are rarely documented, mainly due to outcrop or subsurface dataset limitations. Unit G from the Laingsburg depocentre (Karoo Basin, South Africa) is a rare example of a complete basin margin scale clinothem (>60 km long, 200 m‐high), with >10 km of depositional strike control, which allows a quasi‐3D study of a preserved shelf‐slope‐basin floor transition over a ca. 1,200 km2 area. Sand‐prone, wave‐influenced topset deposits close to the shelf‐edge rollover zone can be physically mapped down dip for ca. 10 km as they thicken and transition into heterolithic foreset/slope deposits. These deposits progressively fine and thin over tens of km farther down dip into sand‐starved bottomset/basin‐floor deposits. Only a few km along strike, the coeval foreset/slope deposits are bypass‐dominated with incisional features interpreted as minor slope conduits/gullies. The margin here is steeper, more channelized and records a stepped profile with evidence of sand‐filled intraslope topography, a preserved base‐of‐slope transition zone and sand‐rich bottomset/basin‐floor deposits. Unit G is interpreted as part of a composite depositional sequence that records a change in basin margin style from an underlying incised slope with large sand‐rich basin‐floor fans to an overlying accretion‐dominated shelf with limited sand supply to the slope and basin floor. The change in margin style is accompanied with decreased clinoform height/slope and increased shelf width. This is interpreted to reflect a transition in subsidence style from regional sag, driven by dynamic topography/inherited basement configuration, to early foreland basin flexural loading. Results of this study caution against reconstructing basin margin successions from partial datasets without accounting for temporal and spatial physiographic changes, with potential implications on predictive basin evolution models.  相似文献   

14.
Most slope-channel outcrop studies have been conducted at continental margin-scale on seismic data. However, in foreland and back-arc deepwater settings, sub-seismic scale slope channels hold equally important information on deepwater sediment delivery, often in hydrocarbon-bearing provinces. One such slope-channel system is examined in Lower Jurassic prograding shelf-margin clinoforms in Bey Malec Estancia, La Jardinera area, southern Neuquén Basin, Argentina. In a 4 km wide, 300 m tall, slightly oblique- to depositional-dip section of Jurassic Los Molles Formation deepwater slope deposits, seven clinoform timelines were identified by isolated slope-channel fills with thicknesses less than 50 m. Sedimentary logs, satellite images, a digital elevation model and drone photogrammetry were used to map variations in downslope channel geometry and infill facies. The slope channels are filled with sediment density flow deposits: poorly sorted conglomeratic debrites, structureless sandy high-density turbidites and well-sorted, fine-grained, graded low-density turbidites. The debrite portion decreases downslope, whereas high- and low-density turbidites increase. A grain-size analysis reveals a broad downslope fining trend of turbidite and debrite beds within slope channels with increasing water depth, and some notable bypass of conglomeratic facies to the lowermost slope channels and basin floor fans. The architecture of the slope channels changes from lateral to aggradational infill downstream. The Bey Malec clinoforms and its slope channels add new knowledge on downslope changes for sediment delivery in relatively shallow (<500 m water depth), prograding-dominant deepwater basins. They also highlight one of very few outcropping examples of oblique-type clinoforms.  相似文献   

15.
Although the trajectory and geometry of clinoforms in different types of basins have been described in many studies, few studies discuss the influence of halokinesis on clinoforms in salt-related basins. In this study, we analyse the Lower Cretaceous clinoforms in the Tiddlybanken Basin, Norwegian Barents Sea to evaluate the impact of salt mobilization on the geometry and trajectory of clinoforms as well as its implications on sediment partitioning. To accomplish this objective, we use a multidisciplinary approach consisting of seismic and well-interpretation, 3D structural restoration, and forward stratigraphic modelling. The results show that salt mobilization affects prograding clinoforms by: (a) causing lateral variations in progradation rates, resulting in complex palaeogeography, (b) increasing slope angles, which affect the equilibrium of the clinoform profile and can trigger slope-readjustment processes and (c) producing lateral and temporal variations in accommodation space, leading to different clinoform trajectories, stacking patterns and reservoir distribution along the basin. Forward stratigraphic modelling shows that in salt-related basins and other tectonically active basins, the isolated use of conventional methods for clinoform analysis might lead to potential interpretation pitfalls such as misinterpretation of trajectories and overestimation of foreset angles, which can have negative consequences for exploration models.  相似文献   

16.
Rare earth element, major and trace element and mineralogy in the sediments representing last 50 cal kyr BP from the summer precipitation fed paleolake San Felipe identify the different association of minerals and selective transportation of different grain size fractions and relate them to the variation in pluvial discharge into the basin as well as aeolian activities in the western Sonora Desert. Period of lower pluvial discharge during 14–48 cal kyr BP is contemporary to the regime of dominant winter storms in the region. Transportation of coarser quartz and plagioclase during 40–48 cal kyr BP and dominant finer fractions during 14–40 cal kyr BP possibly mirror the variation in the frequency of winter storms. During 3–14 cal kyr BP, higher catchment erosion (sedimentation increased 4–12 times) and transportation of REE bearing heavy minerals into the basin indicate higher pluvial discharge. We relate this period to a regime of dominant summer precipitation associated with the North American Monsoon and tropical cyclones. Geochemical and mineralogical signatures of the sediments deposited during ca. 8, 12–13 and >48 cal kyr BP suggest selective mobilization of quartz and plagioclase from the surrounding sand dunes by the aeolian processes.  相似文献   

17.
18.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

19.
This article presents a new numerical inversion method to estimate progradation rates in ancient shallow‐marine clinoform sets, which is then used to refine the tectono‐stratigraphic and depositional model for the Upper Jurassic Sognefjord Formation reservoir in the super‐giant Troll Field, offshore Norway. The Sognefjord Formation is a 10–200‐m thick, coarse‐grained clastic wedge, that was deposited in ca. 6 Myr by a fully marine, westward‐prograding, subaqueous delta system sourced from the Norwegian mainland. The formation comprises four, 10–60‐m thick, westerly dipping, regressive clinoform sets, which are mapped for several tens of kilometres along strike. Near‐horizontal trajectories are observed in each clinoform set, and the sets are stacked vertically. Clinoform age and progradation rates are constrained by: (i) regionally correlatable bioevents, tied to seismically mapped clinoforms and clinoform set boundaries that intersect wells, (ii) exponential age–depth interpolations between bioevent‐dated surfaces and a distinctive foreset‐to‐bottomset facies transition within each well, and (iii) distances between wells along seismic transects that are oriented perpendicular to the clinoform strike and tied to well‐based stratigraphic correlations. Our results indicate a fall in progradation rate (from 170–500 to 10–65 km Myr?1) and net sediment flux (from 6–14 to ≤1 km2 Myr?1) westwards towards the basin, which is synchronous with an overall rise in sediment accumulation rate (from 7–16 to 26–102 m Myr?1). These variations are attributed to progradation of the subaqueous delta into progressively deeper waters, and a concomitant increase in the strength of alongshore currents that transported sediment out of the study area. Local spatial and temporal deviations from these overall trends are interpreted to reflect a subtle structural control on sedimentation. This method provides a tool to improve the predictive potential of sequence stratigraphic and clinoform trajectory analyses and offers a greater chronostratigraphic resolution than traditional approaches.  相似文献   

20.
The western flank of the Jerudong Anticline, onshore Brunei Darussalam, provides a rare opportunity to analyse the base of a major Miocene mud‐rich delta in outcrop, including kilometre‐scale prograding clinoforms, delta‐front turbidites and large‐scale syndepositional faults. The lateral continuation of this system in the subsurface of the Belait Syncline is documented on two‐dimensional (2D) reflection seismic data and wireline logs. In order to link geological observations at surface with corresponding geophysical subsurface signatures, we constructed a combined, quantitative 3D surface–subsurface model of onshore Brunei Darussalam. This 3D model is used to analyse and discuss the relation between field geology and geophysical subsurface interpretation, and provides the base for a quantitative kinematic restoration of the Miocene Belait delta to its original shape before folding. Final decompaction of the balanced rock volume allows the reconstruction of the palaeo‐relief of a series of Miocene clinoforms, indicating a close relation between delta‐lobe activity, clinoform morphology and the generation of delta‐front turbidites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号