首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Permafrost dynamics play an important role in the surface hydrology and carbon balance of northern peatlands. Plant macrofossil analysis with radiocarbon dating has been widely used in detecting past permafrost dynamics in peatlands; however, there is a lack of permafrost‐specific plant indicator species, which makes it challenging to determine the exact timing of historical permafrost aggradation. We investigated the indicator value of oribatid mites in determining past permafrost dynamics in sub‐Arctic peatlands. Analyses of subfossil oribatid mite assemblages of Holocene peat profiles from two mires, one in northern Finland and one in northeastern European Russia, were carried out and interpreted using modern calibration data from the same study areas. The results were compared with previously published reconstructions of permafrost history based on plant macrofossil analyses from the same locations. The results suggest that the oribatid mites Carabodes labyrinthicus, Chamobates borealis and Neoribates aurantiacus are promising indicator species to detect past permafrost occurrence in peatlands. In addition, N. aurantiacus is clearly associated with the presence of lichens, which is particularly useful because lichen remains are rarely preserved in peat deposits. Results are in accordance with earlier studies showing that oribatid mites are useful indicators of past environmental change.  相似文献   

2.
This study presents a multiproxy record of Holocene environmental change in the region East of the Pechora Delta. A peat plateau profile (Ortino II) is analyzed for plant macrofossils, sediment type, loss on ignition, and radiocarbon dating. A paleosol profile (Ortino III) is described and radiocarbon dated. A previously published peat plateau profile (Ortino I) was analyzed for pollen and conifer stomata, loss on ignition, and radiocarbon dating. The interpretation of the latter site is reassessed in view of new evidence. Spruce immigrated to the study area at about 8900 14C yr B.P. Peatland development started at approximately the same time. During the Early Holocene Hypsithermal taiga forests occupied most of the present East-European tundra and peatlands were permafrost free. Cooling started after 5000 14C yr B.P., resulting in a retreat of forests and permafrost aggradation. Remaining forests disappeared from the study area around 3000 14C yr B.P., coinciding with more permafrost aggradation. The retreat of forests resulted in landscape instability and the redistribution of sand by eolian activity. The displacement of the Arctic forest line and permafrost zones indicates a warming of at least 2–3°C in mean July and annual temperatures during the Early Holocene. At least two cooling periods can be recognized for the second half of the Holocene, starting at about 4800 and 3000 14C yr B.P.  相似文献   

3.
Under changing climatic conditions permafrost peatlands can play an important role in the global carbon budget through permafrost carbon feedbacks and shifts in carbon assimilation. To better predict future dynamics in these ecosystems an increased understanding of their Holocene carbon and permafrost history is needed. In Tavvavuoma, northern Sweden, we have performed detailed analyses of vegetation succession and geochemical properties at six permafrost peatland sites. Peatland initiation took place around 10 000 to 9600 cal. a BP, soon after retreat of the Fennoscandian Ice Sheet, and the peatlands have remained permafrost‐free fens throughout most of the Holocene. At the four sites that showed a continuous accumulation record during the late Holocene radiocarbon dating of the shift from wet fen to dry bog vegetation, characteristic of the present permafrost peatland surface, suggests that permafrost developed at around 600–100 cal. a BP. At the other two sites peat accumulation was halted during the late Holocene, possibly due to abrasion, making it more difficult to imply the timing of permafrost aggradation. However also at these sites there are no indications of permafrost inception prior to the Little Ice Age. The mean long‐term Holocene carbon accumulation rate at all six sites was 12.3±2.4 gC m−2 a−1 (±SD), and the mean soil organic carbon storage was 114±27 kg m−2.  相似文献   

4.
Holocene histories of two polygonal peatlands in the low arctic of south-central Nunavut, Canada, are reconstructed using plant macrofossil and pollen stratigraphies of four cores. Peat accumulation began in both basins between 7600 and 8000 cal. yr BP, within less than 1000 years after deglaciation. Mid- to late-Holocene vegetation changes recorded in the peat cores may be related to permafrost aggradation, associated with a regional cooling trend inferred from a nearby lake sediment record. However, differences in the timing of changes among the peatland coring sites indicate that local autogenic processes have also played an important role. Peat accumulation rates have decreased considerably in the past 3000 to 5000 years compared to the early Holocene. Our results illustrate the complexity of peatland development and peat accumulation dynamics in areas of permafrost, resulting from the important influences of both internal autogenic factors and external environmental forces such as climatic change.  相似文献   

5.
The Holocene development of a treed palsa bog and a peat plateau bog, located near the railroad to Churchill in the Hudson Bay Lowlands of northeastern Manitoba, was traced using peat macrofossil and radiocarbon analyses. Both sites first developed as wet rich fens through paludification of forested uplands around 6800 cal. yr BP. Results show a 20th-century age for the palsa formation and repeated periods of permafrost aggradation and collapse at the peat plateau site during the late Holocene. This timing of permafrost dynamics corroborates well with that inferred from previous studies on other permafrost peatlands in the same region. The developmental history of the palsa and peat plateau bogs is similar to that of adjacent permafrost-free fens, except for the specific frost heave and collapse features associated with permafrost dynamics. Permafrost aggradation and degradation is ascribed to regional climatic, local autogenic and other factors. Particularly the very recent palsa development can be assessed in terms of climatic changes as inferred from meteorological data and surface hydrological changes related to construction of the railroad. The results indicate that cold years with limited snowfall as well as altered drainage patterns associated with infrastructure development may have contributed to the recent palsa formation.  相似文献   

6.
A palsa mire in Finnish Lapland is studied by means of plant macrofossil analysis, physico-chemical analysis and AMS radiocarbon dating of peat deposits in order to reconstruct its development. Emphasis was on permafrost dynamics during the Holocene. Mire initiation recorded at four studied sites took place between 8240 and 5210 yr BP, first through terrestrialization of a pond and, beginning from 6780 yr BP, through paludification of birch-dominated uplands. Slow lateral expansion of the mire suggests relatively dry conditions in the region. Rich wet fens prevailed until the late Holocene, when changes connected with permafrost development occurred. First permafrost aggradation is recorded in a high palsa site at c. 2460 yr BP. The pathway of permafrost formation possibly points to a climate cooler than today. Permafrost aggradation in a ridge palsa site is dated to c. 645 yr BP, indicating an early Little Ice Age date. The long-time average carbon accumulation rate in the four peat profiles is 16 gC/m2yr. In the older, high palsa, carbon accumulation during the palsa stage has been low (9 gC/m2yr), while in the younger, ridge palsa site it has been very high (73 gC/m2yr).  相似文献   

7.
An attempt is made to reconstruct the palaeoenvironmental Holocene history at the timberline on the basis of the analysis of various palaeoecological proxy indicators available on a marshy area and its surroundings in the Taillefer Massif (Isère. France). The multidisciplinary approach involves analyses of pollen assemblages. plant macrofossils, coleoptera remains. subfossil trunks extracted from lakes or peat-bogs. and charcoals derived from the surrounding soils. This enables definition of the respective roles of five forest taxa ( Pinus uncinata Mill., Pinus cembra L., Larix decidua Mill., Abies alba Mill, and Picea abies L. Karsten) in the evolution of high altitude forests during the Holocene. Pinus uncinata was present on the plateau throughout the Holocene. Larix and Pinus cembra were present only during two periods: 7500-5000 BP and 3500-2000 BP. All trees disappeared from the plateau at about 2000 BP, while, at lower altitude. Abies was replaced by Picea. The action of both climate and early human impact can explain these changes.  相似文献   

8.
The quantitative and qualitative compositions of polycyclic aromatic hydrocarbons (PAHs) were determined, and the vertical stratification of PAHs was characterized along profiles in hummocky tundra peatlands. In perennially frozen peat layers, PAHs occur in a conserved state and do not undergo transformation in contrast to seasonally thawed layers. Statistically significant correlations were detected between the mass fraction of 5–6-ring structures (especially, benzo[ghi]perylene), individual PAHs, and botanical composition of the peat at the thawing–freezing boundary; and profile relations for various combinations of PAHs were calculated. The radiocarbon and paleobotanical analysis of peatlands in combination with the obtained results can be used for assignment of initial vegetation to periods of peat formation in the Holocene and as markers of the response of the peatland permafrost to climate changes at high latitudes.  相似文献   

9.
A peat deposit from the East European Russian Arctic, spanning nearly 10 000 years, was investigated to study soil organic matter degradation using analyses of bulk elemental and stable isotopic compositions and plant macrofossil remains. The peat accumulated initially in a wet fen that was transformed into a peat plateau bog following aggradation of permafrost in the late Holocene (~2500 cal a BP). Total organic carbon and total nitrogen (N) concentrations are higher in the fen peat than in the moss‐dominated bog peat layers. Layers in the sequence that have lower concentrations of total hydrogen (H) are associated with degraded vascular plant residues. C/N and H/C atomic ratios indicate better preservation of organic matter in peat material dominated by bryophytes as opposed to vascular plants. The presence of permafrost in the peat plateau stage and water‐saturated conditions at the bottom of the fen stage appear to lead to better preservation of organic plant material. δ15N values suggest N isotopic fractionation was driven primarily by microbial decomposition whereas differences in δ13C values appear to reflect mainly changes in plant assemblages. Positive shifts in both δ15N and δ13C values coincide with a local change to drier conditions as a result of the onset of permafrost and frost heave of the peat surface. This pattern suggests that permafrost aggradation not only resulted in changes in vegetation but also aerated the underlying fen peat, which enhanced microbial denitrification, causing the observed 15N‐enrichment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the history and cryostratigraphy of the upper permafrost in the High‐Arctic Adventdalen Valley, central Svalbard. Nineteen frozen sediment cores, up to 10.7 m long, obtained at five periglacial landforms, were analysed for cryostructures, ice, carbon and solute contents, and grain‐size distribution, and were 14C‐ and OSL‐dated. Spatial variability in ice and carbon contents is closely related to the sedimentary history and mode of permafrost aggradation. In the valley bottom, saline epigenetic permafrost with pore ice down to depths of 10.7 m depth formed in deltaic sediments since the mid‐Holocene; cryopegs were encountered below 6 m. In the top 1 to 5 m, syngenetic and quasi‐syngenetic permafrost with microlenticular, lenticular, suspended and organic‐matrix cryostructures developed due to loess and alluvial sedimentation since the colder late Holocene, which resulted in the burial of organic material. At the transition between deltaic sediments and loess, massive ice bodies occurred. A pingo developed where the deltaic sediments reached the surface. On hillslopes, suspended cryostructure on solifluction sheets indicates quasi‐syngenetic permafrost aggradation; lobes, in contrast, were ice‐poor. Suspended cryostructure in eluvial deposits reflects epigenetic or quasi‐syngenetic permafrost formation on a weathered bedrock plateau. Landform‐scale spatial variations in ground ice and carbon relate to variations in slope, sedimentation rate, moisture conditions and stratigraphy. Although the study reveals close links between Holocene landscape evolution and permafrost history, our results emphasize a large uncertainty in using terrain surface indicators to infer ground‐ice contents and upscale from core to landform scale in mountainous permafrost landscapes.  相似文献   

11.
A Late Quaternary permafrost profile from the Labaz Lake area (Taymyr Peninsula, Central Siberia) has been investigated using analyses of diatoms, pollen, sedimentology and geochemistry. A sedimentation gap for the termination of the Pleistocene and the start of lacustrine sedimentation in the Boreal can be inferred. At that time shallow-lake conditions prevailed and a connection to the Labaz Lake is probable. The diatom data provide indications for the assessment of the Holocene environmental development of the study site in more detail. The most favourable climatic conditions and comparatively higher water level stands are inferred for the early Atlantic. Towards the end of this period the gradual transition to a wetland with poor-fen character took place. Within the Subboreal there was a short episode with mild climate conditions. At that time the last trees occurred in the Labaz Lake area and somewhat higher water level stands were likely. The Subatlantic climate deterioration led to further drying up of the wetland along with a lowering of water pH and permafrost aggradation. The transition from a locality with low-centre to one with high-centre polygons is still underway.  相似文献   

12.
Studies of interglacial successions are critical to our understanding of the environmental history of an area. Analyses of macrofossil remains of plants and invertebrates from Eemian sediments exposed in a coastal cliff section at Borðoyarvík near Klaksvík, Bordoy, northeastern Faroe Islands, indicate that the sediments accumulated in a coastal lagoon. The fossil flora comprises tree birch Betula sect. Albae and we suggest that birch forests were found locally at sheltered sites in the area. Tree birch also occurred on the islands during the mid‐Holocene. The only other woody plant recovered from the Eemian deposit is the dwarf‐shrub Empetrum nigrum, which is common on the islands today. Remains of herbaceous plants are rare but include Viola, Ajuga, Myosotis, Urtica dioica and Ranunculus. The bryophyte flora is species‐rich and most of the fragments belong either to stream species or to species of humid or wet habitats. The fossil flora and fauna also comprise a number of freshwater species that probably lived in an oligotrophic lake and in streams in the catchment of the lagoon. The climate during deposition of the lagoonal sediments was similar to the Holocene oceanic climate of the Faroe Islands. The study adds to our understanding of Eemian environments in the North Atlantic region and helps to fill a knowledge gap about the history of the flora and fauna of the Faroe Islands, which is of biogeographical importance.  相似文献   

13.
气候变化是影响全球泥炭沼泽分布和演化的最重要的因子之一,而泥炭地由于自身的特点成为过去气候变化的良好地质档案。在介绍泥炭沉积过程及不同类型的泥炭沼泽的发育特点基础上,从过去气候变化的常用泥炭记录和泥炭地碳记录等方面总结了国际上针对泥炭地反演气候变化研究的若干重要进展,重点剖析了泥炭腐殖化度、植物残体、有壳变形虫、生物标志化合物、同位素和孢粉等泥炭地过去气候变化重建的代用指标的适用范围和优缺点,同时也分析了泥炭地碳累积和碳循环等热点研究问题。最后从泥炭地作为过去气候变化的记录档案、泥炭地对现在气候变化的响应与反馈及在泥炭地进行现场气候变化监测与实验等方面对泥炭地与气候变化研究进行了展望。  相似文献   

14.
Bauer, I. E. & Vitt, D. H. 2011: Peatland dynamics in a complex landscape: Development of a fen‐bog complex in the Sporadic Discontinuous Permafrost zone of northern Alberta, Canada. Boreas, 10.1111/j.1502‐3885.2011.00210.x. ISSN 0300‐9483. The development of a peatland complex in the Sporadic Discontinuous Permafrost zone of northwestern Alberta, Canada was reconstructed using a series of dated profiles. Peat‐forming communities first established c. 10 230 cal. a BP, and by 8000 cal. a BP the site supported monocot fens or marshes in several isolated topographic depressions. Most of the current peatland area initiated between c. 8000 and 4000 cal. a BP, and involved the replacement of upland habitats by shrubby or treed fen and, in some areas, the establishment of Sphagnum on mineral terrain. Ombrotrophic hummock communities had established by c. 7000 cal. a BP, and permafrost was present at 6800 cal. a BP in at least some peat plateau areas. Macrofossil‐based reconstructions show considerable local diversity in vegetation succession and permafrost dynamics, with cyclic collapse and aggradation in at least one profile and relative stability in others. Lichen‐rich peat is rare in deep‐peat plateau cores, and where charcoal was recovered, fire effects on vegetation trajectories varied between cores. Organic matter accumulation was high in the early Holocene and declined after permafrost formation, with low rates especially over the past 4000 years. The site was burned in a wildfire in 1971, and by 1998 permafrost had disappeared from almost all peat plateau areas. In this part of the discontinuous permafrost zone, peat plateaus are likely to be unsustainable under a warming climate. The hydrology and carbon dynamics of former plateau areas following large‐scale permafrost degradation require further investigation.  相似文献   

15.
In this study, we documented the Holocene history of a peat plateau at the arctic tree line in northern Québec using stratigraphic and macrofossil analyses to highlight the effects of geomorphic setting in peatland development. Paludification of the site began about 6800 cal yr BP. From 6390 to 4120 cal yr BP, the peatland experienced a series of flooding events. The location of the peatland in a depression bounded by two small lakes likely explains its sensitivity to runoff. The proximity of a large hill bordering the peatland to the south possibly favored the inflow of mineral-laden water. The onset of permafrost aggradation in several parts of the peatland occurred after 3670 cal yr BP. Uplifting of the peatland surface caused by permafrost stopped the flooding. According to radiocarbon dating of the uppermost peat layers, permafrost distribution progressed from the east to the west of the peatland, indicating differential timing for the initiation of permafrost throughout the peatland. Most of the peatland was affected by permafrost growth during the Little Ice Age. Picea mariana macroremains at 6450 cal yr BP indicate that the species was present during the early stages of peatland development, which occurred soon after the sea regression.  相似文献   

16.
In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze–thaw physics is used to examine the effect of climate, lake size, and lake–groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ~200 to >?1,000  years (vertical thaw rates <?0.1–0.5  m?yr?1). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost.  相似文献   

17.
本文通过对我国大兴安岭古莲河煤矿地区火灾后第二年冻土环境的野外调查表明,火灾后气温、地温、蒸发量及风速有明显的增加;湿度、含冰量、含水量有显著的减小。所有这些因子的变化导致了季节融化深度的增加。这些结论说明了森林火灾后冻土环境确实有较大的变化。此外,结合室内试验,本文还对火灾后最大季节融化深度(ξ_(max))进行了预测、由于植被与冻土关系的复杂性,本文对今后的工作提出了自己的看法,以便更完善地研究火灾后冻土环境的变化及对森林生态系统的影响。  相似文献   

18.
Geomorphic mapping in the upper Conejos River Valley of the San Juan Mountains has shown that three distinct periods of aggradation have occurred since the end of the last glacial maximum (LGM). The first occurred during the Pleistocene–Holocene transition (~ 12.5–9.5 ka) and is interpreted as paraglacial landscape response to deglaciation after the LGM. Evidence of the second period of aggradation is limited but indicates a small pulse of sedimentation at ~ 5.5 ka. A third, more broadly identifiable period of sedimentation occurred in the late Holocene (~ 2.2–1 ka). The latest two periods of aggradation are concurrent with increases in the frequency of climate change in the region suggesting that Holocene alpine and sub-alpine landscapes respond more to rapid changes in climate than to large singular climatic swings. Soil development and radiocarbon dating indicate that hillslopes were stable during the Holocene even while aggradation was occurring in valley bottoms. Thus, we can conclude that erosion does not occur equally throughout the landscape but is focused upslope of headwater streams, along tributary channels, or on ridge tops. This is in contrast to some models which assume equal erosion in headwater basins.  相似文献   

19.
古冻土存在的依据和判别标志主要是古冻土遗迹(深埋藏多年冻土层、古冻土上限、融化夹层、厚层地下冰)和古冰缘现象(古冻胀丘、古融冻褶皱、砂楔、土楔、冰楔假型、风成沙丘、黄土层、厚层泥炭和腐殖质层等)。文章结合大量的测年数据,利用古代和现代冻土以及冰缘现象的时空分布差异综合分析对比,将全新世以来青藏高原多年冻土演化过程和环境变化划分为6个较明显的时段:早全新世的气候剧变期(10800aB.P.至8500~7000aB.P.)、中全新世大暖期(8500~7000aB.P.至4000~3000aB.P.)、晚全新世寒冷期(4000~3000aB.P.至1000aB.P.)、晚全新世温暖期(1000aB.P.至500aB.P.)、全新世末小冰期(500aB.P.至100aB.P.)及近代升温期(100aB.P.至今);同时,概述了各时段高原冻土的发育条件、分布范围及总面积,和当时高原上的古气候、古地理环境。  相似文献   

20.
Northern peatlands represent one of the largest biospheric carbon reservoirs in the world. Their southern margins act as new carbon reservoirs, which can greatly influence the global carbon dynamics. However, the Holocene initiation, expansion and climate sensitivity of these peatlands remain intensely debated. Here we used a compilation of basal peat ages across six isolated peatlands at the southern margins of northern peatlands to address these issues. We found that the earliest initiation event of these peatlands occurred after the Younger Dryas (YD, 12,800–11,700 years ago) period. The second initiation event and rapid expansion occurred since 5 ka cal. BP. The recession of East Asian summer monsoon (EASM) during the YD period and at around 5 ka cal. BP likely played a major role in controlling the initiation and expansion of these peatlands. The rapid expansion of these peatlands possibly contributed to the significant increases in atmospheric methane concentrations during the late Holocene because of the minerotrophic fens status and rapid expansion of them. These ecological processes are different from northern peatlands, indicating the special carbon sink and source implications of these peatlands in the global carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号