首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subduction zone earthquakes and stress in slabs   总被引:3,自引:0,他引:3  
Summary The pattern of seismicity as a function of depth in the world, and the orientation of stress axes of deep and intermediate earthquakes, are explained using viscous fluid models of subducting slabs, with a barrier in the mantle at 670 km. 670 km is the depth of a seismic discontinuity, and also the depth below which earthquakes do not occur. The barrier in the models can be a viscosity increase of an order of magnitude or more, or a chemical discontinuity where vertical velocity is zero. LongN versus depth, whereN is the number of earthquakes, shows (1) a linear decrease to about 250–300 km depth, (2) a minimum near that depth, and (3) an increase thereafter. Stress magnitude in a subducting slab versus depth, for a wide variety of models, shows the same pattern. Since there is some experimental evidence thatN is proportional toe , where is a constant and is the stress magnitude, the agreement is encouraging. In addition, the models predict down-dip compression in the slab at depths below 400 km. This has been observed in earlier studies of earthquake stress axes, and we have confirmed it via a survey of events occurring since 1977 which have been analysed by moment tensor inversion. At intermediate depths, the models predict an approximate but not precise state of down-dip tension when the slab is dipping. The observations do not show an unambiguous state of down-dip tension at intermediate depths, but in the majority of regions the state of stress is decidedly closer to down-dip tension than it is to down-dip compression. Chemical discontinuities above 670 km, or phase transitions with an elevation of the boundary in the slab, predict, when incorporated into the models, stress peaks which are not mirrored in the profile of seismicity versus depth. Models with an asthenosphere and mesosphere of appropriate viscosity can not only explain the state of stress observed in double Benioff zones, but also yield stress magnitude profiles consistent with observed seismicity. Models where a nonlinear rheology is used are qualitatively consistent with the linear models.  相似文献   

2.
In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical valueT cr.Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650–700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth.Our results imply that no barrier to slab penetration at a depth of 650–700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.  相似文献   

3.
Various workers have constructed models to explain a class of anomalous arrivals at Peruvian and Chilean stations from deep-focus South American earthquakes. These arrivals are shear waves with a later arrival time, a higher frequency content, a longer duration and a lower apparent velocity than direct S. Our models assume that there is a sufficiently sharp discontinuity at the upper interface of the descending lithospheric slab between depths of 80 and 250 km to provide efficient reflection (≈0.1) for S-waves incident from below. The observed travel times require a single S-to-S reflection at this interface if the J-B velocity-depth model is modified to allow for 7% higher velocities down to a depth of 300 km (excluding the crust). The locus of required reflection points correlates well with the upper boundary of the observed seismicity (strike and dip angles within 5°) and Q for the proposed path is consistent with the frequency content of the anomalous arrivals. Thus the existence of these arrivals requires a dipping interface down to about 250 km, but, contrary to the wave-guide model of Isacks and Barazangi, cannot be used to infer a continuous lithospheric slab down to the deep-focus earthquakes (h #62; 500 km).  相似文献   

4.
We present a study of the lateral structure and mode of deformation in the transition between the Kuril and Honshu subduction zones. We begin by examining the source characteristics of the January 19, 1969, intermediate depth earthquake north of Hokkaido in the framework of slab-tearing, which for the December 6, 1978 event has been well documented by previous studies. We use a least-squares body wave inversion technique, and find that its focal mechanism is comparable to the 1978 event. To understand the cause of these earthquakes, which in the case of the 1978 event occurred on a vertical tear fault but does not represent hinge faulting, we examine the available International Seismological Centre [ISC] hypocenters and Harvard centroid-moment tensor [CMT] solutions to determine the state of stress, and lateral structure and segmentation in the Kuril and northern Honshu slabs. These data are evaluated in the framework of two models. Model (A) requires the subducting slab at the Hokkaido corner to maintain surface area. Model (B) requires slab subduction to be dominated by gravity, with material subducting in the down-dip direction. The distribution of ICS hypocenters shows a gap in deep seismicity down-dip of the Hokkaido corner, supporting model (B). From the CMT data set we find that three types of earthquake focal mechanisms occur. The first (type A) represents dip-slip mechanisms consistent with down-dip tension or compression in the slab in a direction normal to the strike of the trench. These events occur throughout the Honshu and Kuril slabs with focal mechanisms beneath Hokkaido showing NNW plungingP andT axes consistent with the local slab geometry. The second (type B) occurs primarily at depths over 300 km in the southern part of the Kuril slab with a few events in the northern end of the Honshu deep seismicity. These earthquakes have focal mechanisms with P axes oriented roughly E-W, highly oblique to the direction of compression found in the type A events, with which they are spatially interspersed. The third (type C) group of earthquakes are those events which do not fit in either of the first two groups and consist of either strike-slip focal mechanisms, such as the tearing events, or oddly oriented focal mechanisms. Examination of the stress axes orientations for these three types reveals that the compressional axes of the type C events are consistent with those of type B. The slab tearing events are just differential motion reflecting the E-W compressive states of stress which is responsible for the type B family of events. There is no need to invoke down-dip extension which does not fit the slab geometry. We conclude that these two states of stress can be explained as follows: 1) The type A events and the seismicity distribution support model (B). 2) The type B and C events upport model (A). The solution is that the slab subducts according to model (B), but the flow in the mantle maintains a different trajectory, possibly induced by the plate motions, which produces the second state of E-W compressive stress.  相似文献   

5.
We used data of local earthquakes collected during two recent passive seismic experiments carried out in southern Italy in order to study the seismotectonic setting of the Lucanian Apennine and the surrounding areas. Based on continuous recordings of the temporary stations we extracted over 15,600 waveforms, which were hand-picked along with those recorded by the permanent stations of the Italian national seismic network obtaining a dense, high-quality dataset of P- and S-arrival times. We examined the seismicity occurring in the period 2001–2008 by relocating 566 out of 1047 recorded events with magnitudes ML  1.5 and computing 162 fault-plane solutions. Earthquakes were relocated using a minimum one-dimensional velocity model previously obtained for the region and a Vp/Vs ratio of 1.83. Background seismicity is concentrated within the upper crust (between 5 and 20 km of depth) and it is mostly clustered along the Lucanian Apennine chain axis. A significant feature extracted from this study relates to the two E–W trending clusters located in the Potentino and in the Abriola–Pietrapertosa sector (central Lucania region). Hypocentral depths in both clusters are slightly deeper than those observed beneath the Lucanian Apennine. We suggest that these two seismic features are representative of the transition from the inner portion of the chain to the external margin characterized by dextral strike-slip kinematics. In the easternmost part of the study area, below the Bradano foredeep and the Apulia foreland, seismicity is generally deeper and more scattered. The sparse seismicity localized in the Sibari Plain, in the offshore area along the northeastern Calabrian coast and in the Taranto Gulf is also investigated thanks to the new recordings. This seismicity shows hypocenters between 12 and 20 km of depth below the Sibari Plain and is deeper (foci between 10 and 35 km of depth) in the offshore area of the Taranto Gulf. 102 well-constrained fault-plane solutions, showing predominantly normal and strike-slip character with tensional axes (T-axes) generally NE oriented, were selected for the stress tensor analysis. We investigated stress field orientation inverting focal mechanism belonging to the Lucanian Apennine and the Pollino Range, both areas characterized by a more concentrated background seismicity.  相似文献   

6.
The undulation and characteristics of the Lehmann discontinuity at the base of the Low Velocity Zone in the upper mantle are significant for understanding the coupling between the lithosphere and asthenosphere, and corresponding geodynamic processes. Vertical waveform data from six earthquakes with focal depths between 75 and 150 km and magnitudes M b 5.0–6.0 since 2004 were collected from the short-period Hi-net array. Selected waveform data were processed for each event network pair using the Nth-root slant stack method to retrieve the SdP conversion phases from the possible 220 km (Lehmann) discontinuity. The conversion points related to the SdP phases show that there is a clear and flat velocity interface around 230 km, suggesting that there is a sinking of the Lehmann discontinuity beneath Tonga with no obvious undulation. The 230 km depth of the Lehmann discontinuity in this location could be explained by an hypothesis of transition in the deformation mechanism from dislocation creep to diffusion creep.  相似文献   

7.
(黄培华)(苏维加)(陈金波)SeismicityandstressfieldinOkinawaTroughandRyukyuregions¥Pei-HuaHUANG;Wei-jiaSUandJin-BoCHEN(DepartmentofEartha...  相似文献   

8.
Although subducting slabs undergo a bending deformation that resists tectonic plate motions, the magnitude of this resistance is not known because of poor constraints on slab strength. However, because slab bending slows the relatively rapid motions of oceanic plates, observed plate motions constrain the importance of bending. We estimated the slab pull force and the bending resistance globally for 207 subduction zone transects using new measurements of the bending curvature determined from slab seismicity. Predicting plate motions using a global mantle flow model, we constrain the viscosity of the bending slab to be at most ~ 300 times more viscous than the upper mantle; stronger slabs are intolerably slowed by the bending deformation. Weaker slabs, however, cannot transmit a pull force sufficient to explain rapid trenchward plate motions unless slabs stretch faster than seismically observed rates of ~ 10− 15 s− 1. The constrained bending viscosity (~ 2 × 1023 Pa s) is larger than previous estimates that yielded similar or larger bending resistance (here ~ 25% of forces). This apparent discrepancy occurs because slabs bend more gently than previously thought, with an average radius of curvature of 390 km that permits subduction of strong slabs. This gentle bending may ultimately permit plate tectonics on Earth.  相似文献   

9.
Orientations of the principal axes of the tectonic stress field reconstructed from seismological data on focal mechanisms of earthquakes and strain fields determined from GPS measurements in China are compared. The data of GPS measurements used in the paper were obtained by the Crustal Movement Observation Network of China (about 1000 stations) in the period of 1998–2004. On the basis of information on the recent horizontal crustal motions, the strain field is calculated for the study territory by the finite element method. Calculations of the strain tensor using GPS data were carried out with a step of 1° in latitude and longitude. A catalog of earthquake focal mechanisms was used for the reconstruction of tectonic stress field components. Focal mechanisms of earthquakes were calculated with the use of seismological data on signs of first arrivals from the bulletin of the International Seismological Center. To estimate characteristics of the regional stress field, an approach based on the kinematic method proposed by O.I. Gushchenko was applied. The tectonic stress field was reconstructed in depth intervals of 0 < H < 35 km and 35 km < H < 70 km from data on focal mechanisms of earthquakes over the periods of 1998–2004 and 1985–2004. Comparison of directions of the principal strain axes at the surface (according to GPS measurements) and directions of the principal stress axes (reconstructed from focal mechanisms of earthquakes) showed their good convergence. Seismotectonic strains and GPS measurements coincide within a larger part of the territory. The coincidence is best in a depth interval of 0 < H < 35 km. Maximum misfit values are confined to areas of high 3-D gradients of strain axis directions and are possibly related to the structural heterogeneity of the region, zones with strains of the same type along both horizontal axes (compression or extension along all directions), or areas of small absolute values of recent horizontal movements. Areas with invariable directions of the stress axes are recognizable regardless of the depth of initial data. Good reproducibility of results obtained by two different methods made it possible to check the method of stress field reconstruction using data on focal mechanisms of earthquakes.  相似文献   

10.
The spatial-temporal variations in localization of the sources of earthquakes with H ≥ 14 km are reviewed for the Garm region. The uneven distribution of such earthquakes is related to the block structure: their amount is higher in the weakened zones rather than in blocks. Three weakened zones are characterized by higher activity of deepened seismicity, which varies in time and increases before the earthquakes with K ≥ 12.5. The temporal variations in distribution of earthquake sources with depth allow a suggestion of the relation of the velocity of the Earth’s rotation and activity of deepened seismicity.  相似文献   

11.
Crustal deformation by the M w 9.0 megathrust Tohoku earthquake causes the extension over a wide region of the Japanese mainland. In addition, a triggered M w 5.9 East Shizuoka earthquake on March 15 occurred beneath the south flank, just above the magma system of Mount Fuji. To access whether these earthquakes might trigger the eruption, we calculated the stress and pressure changes below Mount Fuji. Among the three plausible mechanisms of earthquake–volcano interactions, we calculate the static stress change around volcano using finite element method, based on the seismic fault models of Tohoku and East Shizuoka earthquakes. Both Japanese mainland and Mount Fuji region are modeled by seismic tomography result, and the topographic effect is also included. The differential stress given to Mount Fuji magma reservoir, which is assumed to be located to be in the hypocentral area of deep long period earthquakes at the depth of 15 km, is estimated to be the order of about 0.001–0.01 and 0.1–1 MPa at the boundary region between magma reservoir and surrounding medium. This pressure change is about 0.2 % of the lithostatic pressure (367.5 MPa at 15 km depth), but is enough to trigger an eruptions in case the magma is ready to erupt. For Mount Fuji, there is no evidence so far that these earthquakes and crustal deformations did reactivate the volcano, considering the seismicity of deep long period earthquakes.  相似文献   

12.
—?An intriguing observation in Greenland is a clear spatial correlation between seismicity and deglaciated areas along passive continental margins, a piece of evidence for earthquake triggering due to postglacial rebound. Another piece of evidence for induced seismicity due to deglaciation derives from earthquake source mechanisms. Sparse, low magnitude seismicity has made it difficult to determine focal mechanisms from Greenland earthquakes. On the basis of two normal faulting events along deglaciated margins and from the spatial distribution of epicenters, earlier investigators suggested that the earthquakes of Greenland are due to postglacial rebound. This interpretation is tested here by using more recent data. Broadband waveforms of teleseismic P waves from the August 10, 1993 (m b = 5.4) and October 14, 1998 (m b = 5.1) earthquakes have been inverted for moment tensors and source parameters. Both mechanisms indicate normal faulting with small strike-slip components: the 1993 event, strike = 348.9°, dip = 41.0°, rake =?56.3°, focal depth = 11?km, seismic moment = 1.03?×?1024 dyne-cm, and M w = 5.3; the 1998 event, strike = 61.6°, dip = 58.0°, rake =?95.5°, focal depth = 5?km, seismic moment = 5.72?×?1023 dyne-cm, and M w = 5.1. These and the two prior events support the theory that the shallow part of the lithosphere beneath the deglaciated margins is under horizontal extension. The observed stress field can be explained as flexural stresses due to removal of ice loads and surface loads by glacial erosion. These local extensional stresses are further enhanced by the spreading stress of continental crust and reactivate preexisting faults. Earthquake characteristics observed from Greenland suggest that the dominant seismogenic stresses are from postglacial rebound and spreading of the continental lithosphere.  相似文献   

13.
Small earthquakes have been recorded in Yibin area, Sichuan Province since 1970, the frequency and intensity of seismicity have shown an increasing trend in recent ten years, and the earthquakes are distributed mainly in Changning, Gongxian and Junlian areas. Based on the seismic data from January 2008 to May 2015 recorded by Sichuan and Yunnan regional networks and Yibin local network, seismicity analysis, precise location and velocity structure inversion for earthquakes in Yibin area are carried out, the three-dimensional spatial distribution of seismic activity and the velocity structure at different depths in this region are investigated, trying to analyze the seismic activity law and seismogenic mechanism in Yibin area. The earthquake relocation result shows that the spatial cluster distribution of earthquakes is more obvious in Yinbin area, the earthquakes are concentrated in Changning-Gongxian and Gongxian-Junlian regions. The seismic activity presents two dominant directions of NW and NE in Changning-Gongxian region, and shows asymmetric conjugate distribution, the long axes of NW-trending and NE-trending seismic concentration area are about 30km and 12km respectively, and the short axes are about 5km. There is a seismic sparse segment near Gongxian, the frequency and intensity of seismicity in the southeast side are obviously higher than that in the northwest side, and the earthquakes with larger magnitude are relatively deep, the focal depth is gradually shallower with the distance away from Gongxian. Seismic activity is sparse in the west and dense in the east in Gongxian-Junlian region, the predominant direction of earthquakes in the seismic dense area of the eastern segment is NE. Seismic activity extends in opposite direction in the easternmost part of the two earthquake concentrated area. The P-wave velocity structure at different depths in the study area is obtained using joint inversion method of source and velocity structure. In view of the predominant focal depth in this region, this paper mainly analyzes the velocity structure of the upper crust within 10km. Within this study area, the P-wave velocity of earthquake concentration areas is relatively high within 10km of the predominant focal depth, especially in the northwest of Gongxian and eastern Junlian area, the P-wave velocity on the southeast of Gongxian increases gradually with depth, especially at 6km depth. These high-velocity zones are generally related to brittle and hard rocks, where the stress is often concentrated. Comparing earthquake distribution and velocity structure, seismic activity in this area mainly occurs in high-low velocity transition areas, the inhomogeneity of velocity structure may be one of the factors controlling earthquake distribution. The transition zone of high and low velocity anomalies is not only the place where stress concentrates, but also the place where the medium is relatively fragile, such environment has the medium condition of accumulating a large amount of strain energy and is prone to fracture and release stress.  相似文献   

14.
The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σxz and σxx in the Earth’s mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σxz and superlithostatic horizontal stresses σxx are calculated. In the model area of the subducting slabs the stresses are 60–80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields in the transition region of the phase boundaries and viscosity step by the plumes and slabs is analyzed. It is established that the viscosity step and endothermic phase boundary at a depth of 660 km induce heterogeneities in the stress fields at the upper/lower mantle boundary. With the assumed model parameters, the exothermic phase transition at 410 km barely affects the stress fields. The slab regions manifest themselves in the stress fields much stronger than the plume regions. This numerically demonstrates that it is the slabs, not the plumes that are the main drivers of the convection. The plumes partly drive the convection and are partly passively involved into the convection stirred by the sinking slabs.  相似文献   

15.
We investigate the relationship between the impoundment and seismicity in the Longtan reservoir, southwestern China and find evidence that the seismicity was reservoir induced. After the reservoir impoundment, a pronounced increase in seismicity was observed in five clusters mainly concentrated in the areas where few earthquakes had occurred before the first filling. The observed induced seismicity shows a strong correlation with the filling cycles. The activity levels in the five clusters are different due to differences in the structures and permeabilities of the faults. Source parameters for 1,616 earthquakes with M L 0.1–4.2 recorded by 24 fixed and temporary stations deployed around the reservoir were calculated after applying corrections for geometrical spreading, frequency-dependent Q, and site effects. The static stress drop and apparent stress in this area both appear to increase with increasing seismic moment over the entire magnitude range. Our results show that reservoir induced earthquakes have ten times lower average stress drop than natural tectonic earthquakes. These results may indicate that the reservoir induced seismicity can occur with a lower tectonic stress due to the high pore pressures of the underground medium, and that the effect of the water decreases the coefficient of friction.  相似文献   

16.
—The plate boundary between Iberia and Africa has been studied using data on seismicity and focal mechanisms. The region has been divided into three areas: A; the Gulf of Cadiz; B, the Betics, Alboran Sea and northern Morocco; and C, Algeria. Seismicity shows a complex behavior, large shallow earthquakes (h < 30 km) occur in areas A and C and moderate shocks in area B; intermediate-depth activity (30 < h < 150 km) is located in area B; the depth earthquakes (h 650 km) are located to the south of Granada. Moment rate, slip velocity and b values have been estimated for shallow shocks, and show similar characteristics for the Gulf of Cadiz and Algeria, and quite different ones for the central region. Focal mechanisms of 80 selected shallow earthquakes (8 mb 4) show thrust faulting in the Gulf of Cadiz and Algeria with horizontal NNW-SSE compression, and normal faulting in the Alboran Sea with E-W extension. Focal mechanisms of 26 intermediate-depth earthquakes in the Alboran Sea display vertical motions, with a predominant plane trending E-W. Solutions for very deep shocks correspond to vertical dip-slip along N-S trends. Frohlich diagrams and seismic moment tensors show different behavior in the Gulf of Cadiz, Betic-Alboran Sea and northern Morocco, and northern Algeria for shallow events. The stress pattern of intermediate-depth and very deep earthquakes has different directions: vertical extension in the NW-SE direction for intermediate depth earthquakes, and tension and pressure axes dipping about 45 ° for very deep earthquakes. Regional stress pattern may result from the collision between the African plate and Iberia, with extension and subduction of lithospheric material in the Alboran Sea at intermediate depth. The very deep seismicity may be correlated with older subduction processes.  相似文献   

17.
Spain is a low-to-moderate seismicity area with relatively low seismic hazard. However, several strong shallow earthquakes have shaken the country causing casualties and extensive damage. Regional seismicity is monitored and surveyed by means of the Spanish National Seismic Network, maintenance and control of which are entrusted to the Instituto Geográfico Nacional. This array currently comprises 120 seismic stations distributed throughout Spanish territory (mainland and islands). Basically, we are interested in checking the noise conditions, reliability, and seismic detection capability of the Spanish network by analyzing the background noise level affecting the array stations, errors in hypocentral location, and detection threshold, which provides knowledge about network performance. It also enables testing of the suitability of the velocity model used in the routine process of earthquake location. To perform this study we use a method that relies on P and S wave travel times, which are computed by simulation of seismic rays from virtual seismic sources placed at the nodes of a regular grid covering the study area. Given the characteristics of the seismicity of Spain, we drew maps for M L magnitudes 2.0, 2.5, and 3.0, at a focal depth of 10 km and a confidence level 95 %. The results relate to the number of stations involved in the hypocentral location process, how these stations are distributed spatially, and the uncertainties of focal data (errors in origin time, longitude, latitude, and depth). To assess the extent to which principal seismogenic areas are well monitored by the network, we estimated the average error in the location of a seismic source from the semiaxes of the ellipsoid of confidence by calculating the radius of the equivalent sphere. Finally, the detection threshold was determined as the magnitude of the smallest seismic event detected at least by four stations. The northwest of the peninsula, the Pyrenees, especially the westernmost segment, the Betic Cordillera, and Tenerife Island are the best-monitored zones. Origin time and focal depth are data that are far from being constrained by regional events. The two Iberian areas with moderate seismicity and the highest seismic hazard, the Pyrenees and Betic Cordillera, and the northwestern quadrant of the peninsula, are the areas wherein the focus of an earthquake is determined with an approximate error of 3 km. For M L 2.5 and M L 3.0 this error is common for almost the whole peninsula and the Canary Islands. In general, errors in epicenter latitude and longitude are small for near-surface earthquakes, increasing gradually as the depth increases, but remaining close to 5 km even at a depth of 60 km. The hypocentral depth seems to be well constrained to a depth of 40 km beneath the zones with the highest density of stations, with an error of less than 5 km. The M L magnitude detection threshold of the network is approximately 2.0 for most of Spain and still less, almost 1.0, for the western sector of the Pyrenean region and the Canary Islands.  相似文献   

18.
Universality of the Seismic Moment-frequency Relation   总被引:1,自引:0,他引:1  
—We analyze the seismic moment-frequency relation in various depth ranges and for different seismic regions, using Flinn-Engdahl's regionalization of global seismicity. Three earthquake lists of centroid-moment tensor data have been used the Harvard catalog, the USGS catalog, and the Huang et al. (1997) catalog of deep earthquakes. The results confirm the universality of the β-values and the maximum moment for shallow earthquakes in continental regions, as well as at and near continental boundaries. Moreover, we show that although fluctuations in earthquake size distribution increase with depth, the β-values for earthquakes in the depth range of 0–500 km exhibit no statistically significant regional variations. The regional variations are significant only for deep events near the 660 km boundary. For declustered shallow earthquake catalogs and deeper events, we show that the worldwide β-values have the same value of 0.60 ± 0.02. This finding suggests that the β-value is a universal constant. We investigate the statistical correlations between the numbers of seismic events in different depth ranges and the correlation of the tectonic deformation rate and seismic activity (the number of earthquakes above a certain threshold level per year). The high level of these correlations suggests that seismic activity indicates tectonic deformation rate in subduction zones. Combined with the universality of the β-value, this finding implies little if any variation in maximum earthquake seismic moment among various subduction zones. If we assume that earthquakes of maximum size are similar in different depth ranges and the seismic efficiency coefficient, χ, is close to 100% for shallow seismicity, then we can estimate χ for deeper earthquakes for intermediate earthquakes χ≈ 5%, and χ≈ 1% for deep events. These results may lead to new theoretical understanding of the earthquake process and better estimates of seismic hazard.  相似文献   

19.
A longitudinal seismic reflection profile of the Reykjanes Ridge, together with earthquake seismicity patterns, is interpreted in terms of the mantle plume hypothesis. Between 52°N and 57°N Reykjanes Ridge is cut by about 12 fractures whose trend, inferred from other data, is approximately east-west. North of 57° there is little or no indication of east-west fracturing.The 57°N transition from fractured to unfractured basement occurs about 900 km southwest of the postulated Iceland mantle plume. The fractured province exhibits higher seismicity and rougher basement, on transverse profiles, than does the unfractured province. A similar transition to rougher, more seismic ridge crest also occurs 900 km northeast of Iceland. We propose that flowage of hot, basalt-rich asthenosphere away from the Iceland hot spot keeps the axial lithosphere hot, thin, sparsely fractured, and relatively aseismic out to 900 km from the plume. Similar effects are evident in the vicinity of some other plumes located near spreading axes. Some plumes also exhibit a greater number of earthquakes at some distance from the spreading axis — possibly a reflection of non-axial igneous activity or fracturing due to local, plume-generated stresses.The regional basement slope along the longitudinal profile is about 8 × 10?4. If this slope represents a balance between viscous and gravity forces in the flow, a viscosity of the order 1019 poises can be estimated from the Poiseuille equation.A peculiarly flat, opaque reflector was discovered near the Reykjanes axis, about 300 km southwest of Iceland. Several hypotheses are advanced to account for such reflectors by the exceptional volcanic activity associated with high plume discharge.  相似文献   

20.
A least-squares searching technique has been developed to estimate the source dimensions of intermediate and deep focus earthquakes using azimuthal variations of body wave pulse-widths. With this method and also amplitude data, modes of rupture propagation, seismic moments, and stress drops of 17 intermediate and deep focus earthquakes in the Tonga-Kermadec region have been determined in order to investigate variations in source properties and the state of stress within the descending slab there. Three different modes of rupture; unilateral, bilateral, and circular faults, are compared and tested against observations. Results indicate that the unilateral fault is the best model for most of the earthquakes studied. Stress drops of the 17 events vary within a very large range, from 20 bar to about 4.6 kbar, and change significantly with depth. The magnitude of stress drops for depths between 220 and 430 km is very much higher than at shallower depths. This change in stress drop magnitude at about 220 km-depth seems to reflect a change in material properties both in the mantle and within the slab. Two regions of high stress drop are observed at depths of about 360 and 640 km. A relative minimum of stress drop is found at about 450–560 km where the earthquake frequency is particularly high. Earthquakes at the northern end to the Tonga arc, where the Benioff zone is laterally bent, show systematically higher stress drops than other events at comparable depths, but away from the bend. Also, events in regions of low seismicity appear to have higher stress drops than those in regions of high seismicity. The upper bound of seismic efficiency is found to decrease with depth, implying an increase of frictional force with depth at the earthquake source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号