首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new 190Pt–4He method for dating isoferroplatinum has been developed at the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences. Here we publish the first results of dating of isoferroplatinum from the main mineralogical and geochemical types of PGE mineralization in dunite. The obtained 190Pt–4He age of isoferroplatinum is 129 ± 6 Ma. The gained 190Pt–4He age of isoferroplatinum specimens of different genesis (magmatic, fluid–metamorphogenic, and metasomatic) from the Kondyor Massif indicates that the PGM mineralization took place synchronously and successively with evolution of primarily picrite, followed by subalkaline and alkaline melts of the Mesozoic tectonic–magmatic activation of the Aldan Shield.  相似文献   

2.
The Warburton Basin of central Australia has experienced a complex tectonic and fluid-flow history, resulting in the formation of various authigenic minerals. Geochemical and geochronological analyses were undertaken on vein carbonates from core samples of clastic sediments. Results were then integrated with zircon U–Pb dating and uraninite U–Th–total Pb dating from the underlying granite. Stable and radiogenic isotopes (δ18O, Sr and εNd), as well as trace element data of carbonate veins indicate that >200 °C basinal fluids of evolved meteoric origin circulated through the Warburton Basin. Almost coincidental ages of these carbonates (Sm–Nd; 432 ± 12 Ma) with primary zircon (421 ± 3.8 Ma) and uraninite (407 ± 16 Ma) ages from the granitic intrusion point towards a substantial period of active tectonism and an elevated thermal regime during the mid Silurian. We hypothesise that such a thermal regime may have resulted from extensional tectonism and concomitant magmatic activity following regional orogenesis. This study shows that the combined application of geochemical and geochronological analyses of both primary and secondary species may constrain the timing of tectonomagmatic events and associated fluid flow in intraplate sedimentary basins. Furthermore, this work suggests that the Sm–Nd-isotopic system is surprisingly robust and can record geologically meaningful age data from hydrothermal mineral species.  相似文献   

3.
The Michilla mining district comprises one of the most important stratabound and breccia-style copper deposits of the Coastal Cordillera of northern Chile, hosted by the Middle Jurassic volcanic rocks of the La Negra Formation. 40Ar/39Ar analyses carried out on igneous and alteration minerals from volcanic and plutonic rocks in the district allow a chronological sequence of several magmatic and alteration events of the district to be established. The first event was the extrusion of a thick lava series of the La Negra Formation, dated at 159.9 ± 1.0 Ma (2σ) from the upper part of the series. A contemporaneous intrusion is dated at 159.6 ± 1.1 Ma, and later intrusive events are dated at 145.5 ± 2.8 and 137.4 ± 1.1 Ma, respectively. Analyzed alteration minerals such as adularia, sericite, and actinolite apparently give valid 40Ar/39Ar plateau and miniplateau ages. They indicate the occurrence of several alteration events at ca. 160–163, 154–157, 143–148, and 135–137 Ma. The first alteration event, being partly contemporaneous with volcanic and plutonic rocks, was probably produced in a high thermal gradient environment. The later events may be related either to a regional low-grade hydrothermal alteration/metamorphism process or to plutonic intrusions. The Cu mineralization of the Michilla district is robustly bracketed between 163.6 ± 1.9 and 137.4 ± 1.1 Ma, corresponding to dating of actinolite coexisting with early-stage chalcocite and a postmineralization barren dyke, respectively. More precisely, the association of small intrusives (a dated stock from the Michilla district) with Cu mineralization in the region strongly suggests that the main Michilla ore deposit is related to a magmatic/hydrothermal event that occurred between 157.4 ± 3.6 and 163.5 ± 1.9 Ma, contemporaneous or shortly after the extrusion of the volcanic sequence. This age is in agreement with the Re–Os age of 159 ± 16 Ma obtained from the mineralization itself (Tristá-Aguilera et al., Miner Depos, 41:99–105,2006).  相似文献   

4.
The Deh-Salm metamorphic Complex (DMC) of the Lut block in East Iran consists of metapelites, amphibolites, marbles, and metasandstones intruded by granite and pegmatites. U–Pb dating of zircon, monazite, xenotime, and titanite by ID-TIMS show that the granitic rocks were emplaced at 166–163 Ma, confirming that the high temperature metamorphism was synchronous with the intrusive activity, and that the region cooled rapidly thereafter. Late- to post-magmatic hydrothermal activity was probably responsible for the late crystallization, at 159.5 Ma, of zircon and titanite in an amphibolite and of monazite in granite. Xenocrystic zircons yield indications for a Carboniferous component in the source, together with a variety of Precambrian ages, which indicate a provenance of the sedimentary protolith from mature continental crust. The timing and rapidity of the events are consistent with evolution of the DMC in a back-arc environment during the Jurassic subduction of the Neotethys Ocean.  相似文献   

5.
Vertical displacements on the SW–NE Têt fault (Eastern Pyrenees Axial Zone, France), which separates the Variscan Canigou-Carança and Mont-Louis massifs, were constrained using a thermochronologic multi-method approach. 40Ar/39Ar data from the granitic Mont-Louis massif record its Variscan cooling history and reveal no ages younger than Early Cretaceous, while the Canigou-Carança gneiss massif records systematically younger 40Ar/39Ar ages. These younger 40Ar/39Ar ages in the Canigou-Carança gneiss massif are the result of partial to total rejuvenation of argon isotopic systems related to a thermal flow coeval with the Cretaceous HT-BP metamorphism in the North Pyrenean Zone. Only the deepest rocks from the Canigou-Carança suffered this extensive Mid-Cretaceous thermal overprint probably due to differential burial around 4 km at that time. The post Mid-Cretaceous vertical displacements along the Têt fault are recorded by “low” temperature thermochronology using K-feldspar 40Ar/39Ar, zircon and apatite fission track and (U–Th)/He datings. The Mont-Louis granite samples experienced a long period of protracted cooling reflecting a lack of thermo-tectonic activity in this area from Late Palaeozoic to Early Cenozoic, followed by cooling from 55–60 Ma to Late Eocene at a mean rate of 15–20°C/Ma in the final stage. This cooling stage corresponds to Têt fault reactivation with a reversed component, promoting exhumation of the Mont-Louis roof zone contemporaneously with the south-vergent Pyrenean thrusting. In the Canigou-Carança massif, the main cooling event occurred from 32 to 18 Ma at a maximum rate of 30°C/Ma during Early Oligocene followed by a more moderate rate of 3°C/Ma from Late Oligocene to Early Burdigalian, coeval with the normal reactivation of the Têt fault in brittle conditions that accommodated the final exhumation of the massif during the opening of the Gulf of Lion.  相似文献   

6.
New U–Pb, Re–Os, and 40Ar/39Ar dates are presented for magmatic and hydrothermal mineral phases in skarn- and porphyry-related ores from the Nambija and Pangui districts of the Subandean zone, southeastern Ecuador. Nambija has been one of the main gold-producing centers of Ecuador since the 1980s due to exceptionally high-grade ores (average 15 g/t, but frequently up to 300 g/t Au). Pangui is a recently discovered porphyry Cu–Mo district. The geology of the Subandean zone in southeastern Ecuador is dominated by the I-type, subduction-related, Jurassic Zamora batholith, which intrudes Triassic volcanosedimentary rocks. The Zamora batholith is in turn cut by porphyritic stocks, which are commonly associated with skarn formation and/or porphyry-style mineralization. High precision U–Pb and Re–Os ages for porphyritic stocks (U–Pb, zircon), associated prograde skarn (U–Pb, hydrothermal titanite), and retrograde stage skarn (Re–Os, molybdenite from veins postdating gold deposition) of the Nambija district are all indistinguishable from each other within error (145 Ma) and indicate a Late Jurassic age for the gold mineralization. Previously, gold mineralization at Nambija was considered to be Early Tertiary based on K–Ar ages obtained on various hydrothermal minerals. The new Jurassic age for the Nambija district is slightly younger than the 40Ar/39Ar and Re–Os ages for magmatic–hydrothermal minerals from the Pangui district, which range between 157 and 152 Ma. Mineralization at Nambija and Pangui is associated with porphyritic stocks that represent the last known episodes of a long-lived Jurassic arc magmatism (∼190 to 145 Ma). A Jurassic age for mineralization at Nambija and Pangui suggests that the Northern Andean Jurassic metallogenic belt, which starts in Colombia at 3° N, extends down to 5° S in Ecuador. It also adds a new mineralization style (Au-skarn) to the metal endowment of this belt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The Chengchao and Jinshandian deposits in the southeast Hubei Province are the two largest skarn Fe deposits in the Middle–Lower Yangtze River Valley metallogenic belt (MLYRVMB), China. They are characterized by NW-striking orebodies that are developed along the contacts between the Late Mesozoic granitoid and Triassic carbonate and clastic rocks. New sensitive high-resolution ion microprobe and laser ablation inductively coupled plasma mass spectrometry zircon U–Pb dating of the mineralization-related quartz diorite and granite at Chengchao yield ages of 129 ± 2 and 127 ± 2 Ma, respectively, and those at Jinshandian of 127 ± 2 and 133 ± 1 Ma, respectively. These results are interpreted as the crystallization age of these intrusions. Hydrothermal phlogopite samples from the skarn ores at Chengchao and Jinshandian have the plateau 40Ar–39Ar ages of 132.6 ± 1.4 and 131.6 ± 1.2 Ma, respectively. These results confirm that both intrusions and associated skarn Fe mineralization were formed contemporaneously in the middle Early Cretaceous time. New zircon U–Pb and phlogopite 40Ar–39Ar ages in this study, when combined with available precise geochronological data, demonstrate that there were two discontinuous igneous events, corresponding to two episodes of skarn Fe-bearing mineralization in the southeast Hubei Province: (1) 140–136 Ma diorites and quartz diorites and 141–137 Ma skarn Cu–Fe or Fe–Cu deposits and (2) 133–127 Ma quartz diorites and granites and 133–132 Ma skarn Fe deposits. This scenario is similar to that proposed for the entire MLYRVMB. The intrusions related to skarn Fe deposits show obviously petrological and geochemical differences from those related to skarn Cu–Fe or Fe–Cu deposits. The former are quartz diorite and diorite in petrology and have similar adakitic geochemical signatures and in equilibrium with a garnet-rich residue, whereas the latter are petrologically granite and quartz diorite that are distinguishable from adakitic rocks and in equilibrium with a plagioclase residue. These features indicated that two episodes of magmatism and the formation of skarn Fe-bearing deposits in the southeast Hubei Province, MLYRVMB, might be associated lithosphere thinning induced by asthenosphere upwelling during the Late Mesozoic.  相似文献   

8.
9.
Reliable age estimation was obtained originally in this study for gold mineralization of the Malomyr deposit (the eastern part of the Mongolian–Okhotsk foldbelt), which is one of the most well-known deposits in the Russian Far East. The data obtained show that the age of hydrothermal process that resulted in the formation of the Malomyr deposit may be estimated as ~133–132 Ma. Data on magmatism of the same age within the considered region are absent. In the opinion of the authors, mobilization, redistribution of the ore material, and the formation of the Malomyr deposit were mostly controlled by dislocation processes accompanied by hydrothermal activity, which is supported by the results of structural studies.  相似文献   

10.
We determined Ar/Ar eruption ages of eight extrusions from the Pleistocene Coso volcanic field, a long-lived series of small volume rhyolitic domes in eastern California. Combined with ion-microprobe dating of crystal ages of zircon and allanite from these lavas and from granophyre geothermal well cuttings, we were able to track the range of magma-production rates over the past 650 ka at Coso. In ≤230 ka rhyolites we find no evidence of protracted magma residence or recycled zircon (or allanite) from Pleistocene predecessors. A significant subset of zircon in the ~85 ka rhyolites yielded ages between ~100 and 200 Ma, requiring that generation of at least some rhyolites involves material from Mesozoic basement. Similar zircon xenocrysts are found in an ~200 ka granophyre. The new age constraints imply that magma evolution at Coso can occur rapidly as demonstrated by significant changes in rhyolite composition over short time intervals (≤10’s to 100’s ka). In conjunction with radioisotopic age constraints from other young silicic volcanic fields, dating of Coso rhyolites highlights the fact that at least some (and often the more voluminous) rhyolites are produced relatively rapidly, but that many small-volume rhyolites likely represent separation from long-lived mushy magma bodies.  相似文献   

11.
The large Jiguanshan porphyry Mo deposit, with more than 100 Mt of ore and grades ranging from 0.08% to 0.11%, is located in the newly identified Xilamulun metallogenic belt along the northern margin of the North China Craton. The Mo mineralization is predominantly disseminated in the host granite porphyry, but locally occurs as stockworks in lithic tuff and rhyolitic rocks. 40Ar/39Ar dates of samples from groundmass material in the host granite porphyry, post-ore diabase, and quartz porphyry dikes show plateau ages of 155.1 ± 1.9, 149.4 ± 0.9, and 147.6 ± 0.9 Ma, with inverse isochron ages of 156.0 ± 1.8, 149.3 ± 1.3, and 148.3 ± 1.2 Ma, respectively. Seven samples of disseminated molybdenite yielded a weighted average 187Re-187Os age of 155.3 ± 0.9 Ma, whereas six veinlet-type molybdenite samples yielded a weighted average 187Re-187Os age of 153.0 ± 0.9 Ma, providing direct timing constraints for the Mo mineralization at 153–155 Ma. The regional geological setting together with the emplacement of post-ore diabase and quartz porphyry dikes in the Jiguanshan deposit, are indicative of an extensional regime in Late Jurassic, which was probably linked to lithospheric extension in northeast China.  相似文献   

12.
Rutile is a common accessory mineral that occurs in a wide spectrum of metamorphic rocks, such as in blueschists, eclogites, and granulites and as one of the most stable detrital heavy minerals in sedimentary rocks. The advent of rutile trace element thermometry has generated increased interest in a better understanding of rutile formation. This study documents important analytical advances in in situ LA-ICP-MS U/Pb geochronology of rutile: (1) Matrix matching, necessary for robust in situ dating is fulfilled by calibrating and testing several rutile standards (R10, R19, WH-1), including the presentation of new TIMS ages for the rutile standard R19 (489.5 ± 0.9 Ma; errors always stated as 2 s). (2) Initial common lead correction is routinely applied via 208Pb, which is possible due to extremely low Th/U ratios (usually <0.003) in most rutiles. Employing a 213 nm Nd:YAG laser coupled to a quadrupole ICP-MS and using R10 as a primary standard, rutile U/Pb concordia ages for the two other rutile standards (493 ± 10 Ma for R19; 2640 ± 50 Ma for WH-1) and four rutile-bearing metamorphic rocks (181 ± 4 Ma for Ivrea metapelitic granulite; 339 ± 7 Ma for Saidenbach coesite eclogite; 386 ± 8 Ma for Fjortoft UHP metapelite; 606 ± 12 Ma for Andrelandia metepelitic granulite) always agree within 2% with the reported TIMS ages and other dating studies from the same localities. The power of in situ U/Pb rutile dating is illustrated by comparing ages of detrital rutile and zircon from a recent sediment from the Christie Domain of the Gawler Craton, Australia. While the U/Pb age spectrum from zircons show several pronounced peaks that are correlated with magmatic episodes, rutile U/Pb ages are marked by only one pronounced peak (at ca 1,675 Ma) interpreted to represent cooling ages of this part of the craton. Rutile thermometry of the same detrital grains indicates former granulite-facies conditions. The methods outlined in this paper should find wide application in studies that require age information of single spots, e.g., provenance studies, single-crystal zoning and texturally controlled dating.  相似文献   

13.
The paper reports detailed data on phlogopite from kimberlite of three facies types in the Arkhangelsk Diamondiferous Province (ADP): (i) massive magmatic kimberlite (Ermakovskaya-7 Pipe), (ii) transitional type between massive volcaniclastic and magmatic kimberlite (Grib Pipe), and (iii) volcanic kimberlite (Karpinskii-1 and Karpinskii-2 pipes). Kimberlite from the Ermakovskaya-7 Pipe contains only groundmass phlogopite. Kimberlite from the Grib Pipe contains a number of phlogopite populations: megacrysts, macrocrysts, matrix phlogopite, and this mineral in xenoliths. Phlogopite macrocrysts and matrix phlogopite define a single compositional trend reflecting the evolution of the kimberlite melt. The composition points of phlogopite from the xenoliths lie on a single crystallization trend, i.e., the mineral also crystallized from kimberlite melt, which likely actively metasomatized the host rocks from which the xenoliths were captured. Phlogopite from volcaniclastic kimberlite from the Karpinskii-1 and Karpinskii-2 pipes does not show either any clearly distinct petrographic setting or compositional differentiation. The kimberlite was dated by the Rb–Sr technique on phlogopite and additionally by the 40Ar/39Ar method. Because it is highly probable that phlogopite from all pipes crystallized from kimberlite melt, the crystallization age of the kimberlite can be defined as 376 ± 3 Ma for the Grib Pipe, 380 ± 2 Ma for the Karpinskii-1 pipe, 375 ± 2 Ma for the Karpinskii-2 Pipe, and 377 ± 0.4 Ma for the Ermakovskaya-7 Pipe. The age of the pipes coincides within the error and suggests that the melts of the pipes were emplaced almost simultaneously. Our geochronologic data on kimberlite emplacement in ADP lie within the range of 380 ± 2 to 375 ± Ma and coincide with most age values for Devonian alkaline–ultramafic complexes in the Kola Province: 379 ± 5 Ma; Arzamastsev and Wu, 2014). These data indicate that the kimberlite was formed during the early evolution of the Kola Province, when alkaline–ultramafic complexes (including those with carbonatite) were emplaced.  相似文献   

14.
New 87Sr/86Sr, δ13C, and δ18О chemostratigraphic data were obtained for carbonate rocks of the Lower Riphean Yusmastakh and the Vendian Starorechenskaya formations. The δ13С values in dolomites of the Yusmastakh Formation varies from–0.6 to–0.1‰ and in dolomites and dolomitic limestones of the Starorechenskaya Formation, from–1.2 to–0.4‰ PDB, and δ18О values, from 24.4 to 26.4‰ and from 25.3 to 27.6‰ SMOW, respectively. The Rb–Sr systematics of carbonate rocks was studied using the refined method of stepwise dissolution of samples in acetic acid, including chemical removal of up to one-third of the ground sample by preliminary acid leaching and subsequent partial dissolution of the rest of the sample. Owing to this procedure, secondary carbonate material is removed, which enables one to improve the quality of the Sr-chemostratigraphic data obtained. The initial 87Sr/86Sr ratios in carbonate rocks of the Yusmastakh (0.70468–0.70519) and Starorechenskaya (0.70832–0.70883) formations evidence the Riphean–Vendian boundary in the Precambrian sequence of the Anabar Uplift.  相似文献   

15.
The Pampa region in Argentina includes vast unconfined–semiconfined aquifers that local economies depend upon, but detailed knowledge of the associated water resources is still lacking. The Pampeano aquifer in the Pampa plain of Argentina covers around 1.5 million km2. In order to achieve a better understanding of the hydrogeological system through the estimation of mean residence times (MRT), water samples were taken from 12 monitoring wells, drilled at different depths in four locations, and analyzed for environmental tracers. The concentrations of 3H, tritiogenic 3He and chlorofluorocarbons (CFCs) can be explained by mixtures of young waters adjusted to exponential piston flow models (EPM) or dispersion models (DM), and different proportions of tracer-free waters (dead water). The sampling site located very close to the water divide shows a dominance of young waters: 85 % of water best represented by a DM model with a MRT of 3 years. For the shallow wells at other sites, best-fitting models result in a DM with MRT between 20 and 35 years, and proportions of dead water between 40 and 60 %. These results lead to important updates in the conceptual model of the Pampeano aquifer. Large proportions of dead water at a few meters depth can be the consequence of upward flows in a multilayered aquifer or diffusive retardation in the inter-bedded clay layers.  相似文献   

16.
High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a 750 km long section of the Central Indian Ridge between 3 °S and 11 °S have been analysed to understand the crustal structure and the ridge segmentation pattern. The mantle Bouguer anomalies (MBA) and the residual mantle Bouguer anomalies (RMBA) computed in the study area have shown significant variations along the ridge segments that are separated by transform and non-transform discontinuities. The MBA lows observed over the linear ridge segments bounded by well-defined transform faults are attributed to the thickening of the crust at the middle portions of the ridge segments. The estimates of crustal thickness from the RMBA shows an average of 5.2 km thick crust in the axial part of the ridge segments. The MBA and relative RMBA highs along the two non-transform discontinuities suggests a thinner crust of up to 4.0 km. The most significant MBA and RMBA highs were observed over the Vema transform fault suggesting thin crust of 4 km in the deepest part of the transform fault where bathymetry is more than 6000 m. The identified megamullion structures have relative MBA highs suggesting thinner crust. Besides MBA lows along the ridge axis, significant off-axis MBA lows have been noticed, suggesting off-axis mantle upwelling zones indicative of thickening of the crust. The rift valley morphology varies from the typical V-shaped valley to the shallow valley floor with undulations on the inner valley floor. Segments with shallow rift valley floor have depicted well-defined circular MBA lows with persistent RMBA low, suggesting modulation of the valley floor morphology due to the variations in crustal thickness and the mantle temperature. These are supported by thicker crust and weaker lithospheric mantle.  相似文献   

17.
The paper presents the results of study of the Sr, C, and O isotope compositions in Upper Jurassic carbonate rocks of the Baidar Valley and Demerdzhi Plateau in the Crimean Mountains represented by different facies of the carbonate platform at the northern active margin of the Tethys. The 87Sr/86Sr value in them varies from 0.70699 to 0.70728. Based on the Sr chemostratigraphic correlation, the age of massive and layered limestones in the western part of the Ai-Petri and Baidar yailas (pastures) is estimated as late Kimmeridgian–early Tithonian, whereas the age of flyschoids of the Baidar Valley are estimated as late Tithonian–early Berriasian. The nearly synchronous formation of carbonate breccias of the Baidar Valley and Demerdzhi Plateau in late Tithonian–early Berriasian is substantiated. A summary section of Upper Jurassic rocks is compiled based on the Sr chemostratigraphic data. It has been established that δ18O values in the studied carbonate sediments vary from–2.9 to 1.3‰ (V-PDB). At the same time, shallow-water sediments in the internal part and the edge of the Crimean carbonate platform are depleted in 18O (–2.9 to +0.1‰) relative to sediments on the slope and foothill (–0.5 to +1.3‰). It is demonstrated that δ13C values do not depend on the facies properties and decrease in younger carbonate sediments from 3–3.5‰ to 1–1.5‰ in line with the Late Jurassic general trend. The δ13C values obtained for the Crimean carbonate platform turned out to be 0.5–1‰ higher than the values typical of the deep-water marine setting at the western margin of the Tethys. These discrepancies are likely related to peculiarities of water circulation and high bioproductivity in marine waters of the northern Peri-Tethys.  相似文献   

18.
Groundwater is of utmost significance to socio-economic development and ecological recovery for the Loess Plateau. However, studies regarding the mechanism governing groundwater recharge over this area appear to be inadequate. This study is to examine the spatio-temporal variations of δ2H and δ18O in precipitation and shallow groundwater. On the basis of this, the mechanisms governing shallow groundwater recharge were explored. Precipitation and groundwater were sampled monthly from May to October during the period 2004–2006 at 13 sites in the Chabagou Catchment (187 km2). In the Caopingxigou Experimental Watershed (0.1 km2), meteorological variables were observed and rainfall larger than 5 mm was sampled immediately after each rain event. Across the area, 90% of the precipitation occurred from May to September primarily in the form of heavy rains or rainstorms with great spatial variability. There were about 30 localized rains in each year. It was indicated that there existed notable seasonality and pronounced spatial variability in precipitation isotopic compositions. Contributing factors and indications of isotopic compositions, as well as their climatic indications such as monsoon intensities and mixing processes of water vapor, were investigated. The δ2H–δ18O relation of groundwater was found to be δ2H = 3.22 × δ18O − 38.1, deviating from the local meteoric water line δ2H = 7.57 × δ18O + 3.9. The range of δ values in groundwater is shrunken to be 15–21% of that in individual precipitations, and groundwater in the middle reaches shows a wider range of δ values. Isotopic results showed that groundwater originates from precipitation with hydrogen and oxygen isotopic compositions being −69 and −9.7‰, respectively, and most groundwater experiences serious evaporation and adequate mixing with old water during infiltration or percolation in the aerated zone. It was also founded that obvious fluctuations of isotopic compositions in groundwater mainly appear in the middle reaches especially at sites that are close to valleys, suggesting varying sources of groundwater from precipitation, precipitation runoff, isotopically enriched surface water and/or lateral recharge of adjacent groundwater.  相似文献   

19.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.  相似文献   

20.
The Pirgadikia Terrane in northern Greece forms tectonic inliers within the Vardar suture zone bordering the Serbo-Macedonian Massif to the southwest. It comprises Cadomian basement rocks of volcanic-arc origin and very mature quartz-rich metasedimentary rocks. U–Pb laser ablation sector-field inductively-coupled plasma mass spectrometry analyses of detrital zircons from the latter reveal a marked input from a Cadomian–Pan-African source with minor contribution from Mesoproterozoic, Palaeoproterozoic and Archaean sources. The metasedimentary rocks are correlated with Ordovician overlap sequences at the northern margin of Gondwana on the basis of their maturity and zircon age spectra. The Pirgadikia Terrane can be best interpreted as a peri-Gondwana terrane of Avalonian origin, which was situated close to the Cadomian terranes in the Late Neoproterozoic–Early Palaeozoic, very much like the Istanbul Terrane. The second unit investigated is the Vertiskos Terrane, which constitutes the major part of the Serbo-Macedonian Massif in Greece. It comprises predominantly igneous rocks of Silurian age and minor metasedimentary rocks of unknown age and provenance. U–Pb analyses of detrital zircons from a garnetiferous mica schist of the Vertiskos Terrane indicate derivation from 550 to 1,150 Ma-old source rocks with a major Cadomian peak. This, combined with minor input of >1,950 Ma-old zircons and the absence of ages between ca. 1.2 and 1.7 Ga suggests a NW Africa source. The protolith age of the garnetiferous mica schist is presumably Early Ordovician. One sample of garnet-bearing biotite gneiss, interpreted as meta-igneous rock, comprises predominantly subhedral zircons of igneous origin with late Middle Ordovician to Silurian ages. We suggest that the rock association of the Vertiskos Terrane is part of an ancient active-margin succession of the Hun superterrane, comparable to successions of the Austro- and Intra-Alpine Terranes. The new data of this study provide evidence of occurrences of Avalonia- and Armorica-derived terranes in the Eastern Mediterranean and moreover help to clarify palaeogeographic reconstructions for the peri-Gondwana realm in the Early Palaeozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号