首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous and campaign-based aerosol field measurements are essential in understanding fundamental atmospheric aerosol processes and for evaluating their effect on global climate, environment and human life. Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over the Indian region in order to understand the additional sources (forest fires) of aerosol. The higher values in black carbon aerosol mass concentration and aerosol optical depth correlated well with forest fires occurring over the region. Ozone Monitoring Instrument (OMI) aerosol index (AI) variations showed absorbing aerosols over the region and correlated with ground measurements.  相似文献   

2.
Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.  相似文献   

3.
雪冰中的黑碳记录研究的历史回顾   总被引:2,自引:2,他引:2  
明镜  秦大河  效存德 《冰川冻土》2005,27(4):539-544
黑碳(Blackcarbon)是一类大气气溶胶,也是重要的气候驱动因子之一,它与人类活动密切相关.迄今发现,雪冰是保存和记录历史时期黑碳变化的最好介质.根据前人对南极冰芯、格陵兰冰芯、中低纬度山地冰川冰芯以及雪坑样品中的黑碳记录的研究成果,讨论了不同研究地区雪冰中黑碳含量的变化,黑碳对气候环境突变、大气环流变化的响应,总结了人类活动与雪冰黑碳记录之间的关系.雪冰黑碳记录还可以获得如森林大火这样的特殊事件的信息.  相似文献   

4.
用扫描电镜技术识别广州市大气颗粒物主要种类   总被引:19,自引:2,他引:19  
董树屏  刘涛等 《岩矿测试》2001,20(3):202-207
利用扫描电镜技术对大气颗粒物的来源进行识别,采取手动分析与自动分析两种方法,得出的结果在总趋势上相互一致。手动方法和自动方法各有特点。自动分析在细颗粒,特别是含硫颗粒分析方面有优势,而手动分析在形貌观测和确定有机粗颗粒污染状况方面有独到之处。实验结果表明,大气颗粒物的来源是多样的,治理措施也应是综合性的,既要注意工业点源的污染治理和排放控制,如燃煤飞灰,钙质颗粒富铁颗粒等,也要注意面源排放,如土壤扬尘和碳质颗粒,碳质颗粒的来源复杂,可以是工业过程,燃烧过程,机动车尾气,生物质燃,树木自然排放。  相似文献   

5.

The first data on the concentrations, fluxes, and mineral and chemical compositions of aerosols from the near-water surface layer of the Caspian Sea are presented. It is shown that the aerosol fluxes onto the sea surface are comparable to the fluxes of a lithogenic substance in a water column. The mineral and chemical compositions of aerosols depend on the carrying air masses that pass through different regions. The coefficients of enrichment of aerosols with chemical elements relative to the upper lithosphere and their correlation relationships are studied.

  相似文献   

6.
Aerosol optical depth (AOD) at 630 nm wavelength over the oceanic regions adjoining the Asian Continent is examined using a seven-year long data base derived from the Advanced Very High Resolution Radiometer (AVHRR) on board NOAA satellite to study the mean spatial and temporal variations as well as to understand the impact of aerosols advecting from the continent. Depending on the prevailing meteorological conditions and nature of synoptic circulation, the AOD over the oceanic region shows a systematic annual variation. This annual pattern inturn also shows an inter-annual variability because of the corresponding variations in the meteorological features over the continent as well as small-scale deviations in the nature of synoptic circulation. The annual variation over the oceanic regions also shows a pronounced spatial heterogeneity depending on the influence of continental aerosols. Making use of the wind speed dependence of sea-salt AOD at far-oceanic environments and monthly mean wind speeds at small grids of size 5° × 5°, the annual variation of sea-salt AOD at different locations is studied to understand the spatial heterogeneity of this component. The residual component obtained by subtracting this from the measured AOD is the non-oceanic component due to advection from continent. The source regions for major continental advections are delineated from the analysis of air-mass back trajectories at appropriate locations identified from the annual pattern of non-oceanic component. The long-term effect of the continental impact is examined from the mean trend of AOD over the three major oceanic regions. This study shows that the continental influence is most significant over the Arabian Sea, followed by the Bay of Bengal and is almost insignificant in most of the regions over the Southern Hemispheric Indian Ocean, except for the effect of smoke aerosols over a few locations near Indonesia and Madagascar.  相似文献   

7.
8.
中国区域碳排放研究   总被引:20,自引:7,他引:13  
通过比较不同机构和学者对中国区域碳排放的测算结果, 指出现有测算结果间存在巨大差异的具体原因, 按照更加科学准确的方法重新测算了中国各省及中部、东部、西部等主要区域的能源和水泥的碳排放量, 以此为基础, 通过对比分析, 对1990至2008年间不同区域碳排放总量、人均排放量、碳排放强度等重要指标的差异进行了系统分析。研究表明: 中国的区域碳排放格局是东部地区排放总量和累计排放量最大, 但西部地区排放总量及占全国的份额有逐步增加的趋势; 着重指出西部地区作为中国下一轮经济发展最重要的增长点, 其目前的人均碳排放量和碳排放强度均高于相同发展阶段的其他地区, 如不尽快转变其发展模式, 则会使未来的节能减排形势异常严峻, 中国的低碳经济之路仍旧任重而道远。  相似文献   

9.
森林大火对冻土环境影响的研究进展   总被引:2,自引:2,他引:0  
森林大火是森林生态系统最主要的干扰因素之一,不仅影响着森林生态系统内部的营养物质循环、水分和能量流动、土壤理化性质的变化,而且对冻土环境和冷生土壤和土壤碳库、碳氮循环等生物地球化学过程有着重要影响。随着气候变暖和人为活动不断增强,北方林区火灾日益频繁,对冻土的水热影响显著:活动层加深、薄层冻土退化、浅层有机碳大量快速释放、森林和湿地的逆向演替,导致热融沉陷、滑塌、泥石流等现象发生。通过综述国内外森林大火对冻土环境影响的研究进展,分析指出目前森林大火对冻土环境影响的研究主要集中在火烧之后短时间、小范围的定性描述与推断,缺乏长时间、大范围的定量分析。尤其是在大兴安岭地区,除了20世纪90年代初期的少量研究外,此后这方面研究虽有零星报道,但缺乏长期和系统的观测与模型研究,所以森林大火对冻土环境的研究,可以利用空间代替时间的方法,通过长、短期的野外观测和数值模拟相结合,定量研究森林大火之后,多年冻土的水热状态、过程和变化机制,可以为寒区林区、湿地保护、生态环境修复提供科学依据。  相似文献   

10.
本次研究利用MODIS、CALIPSO等卫星观测资料以及MERRA-2再分析资料分析了2007–2017年撒哈拉地区气溶胶光学厚度的空间分布特征。结果表明,撒哈拉地区气溶胶光学厚度的空间分布具有明显的季节变化,夏季沙尘气溶胶光学厚度高值区位于撒哈拉北部地区,高达0.6以上;而冬季沙尘气溶胶光学厚度高值区位于撒哈拉南部地区,最大值约为0.5。此外,撒哈拉地区在不同季节的主要气溶胶类型均为沙尘,但在撒哈拉南部地区沙尘气溶胶光学厚度对总气溶胶光学厚度的贡献有明显的季节性差异。基于CALIPSO体积退偏比的研究结果表明,在撒哈拉南部地区,夏季人为气溶胶占比大,气溶胶粒子趋于球形,冬季气溶胶粒子的退偏比则明显高于夏季,粒子非球形程度更高。夏季撒哈拉北部地区位于脊前槽后的位置,以南地区近地面主要为偏西风,携带了大量水汽的气流由大西洋吹向撒哈拉地区,使撒哈拉南部地区进入雨季,增强了沙尘气溶胶的沉降,因此夏季撒哈拉地区沙尘气溶胶光学厚度分布北高南低;冬季高压控制着撒哈拉北部地区,撒哈拉南部地区近地面盛行偏东风,且冬季温度偏低,容易形成逆温,不利于沙尘气溶胶和局地污染物扩散,导致沙尘气溶胶光学厚度南高北...  相似文献   

11.
《Applied Geochemistry》2002,17(3):129-162
Biomass combustion is an important primary source of particles with adsorbed biomarker compounds in the global atmosphere. The introduction of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. Although the molecular compositions of organic matter in smoke particles are highly variable, the molecular tracers are generally still source specific. Dehydroabietic acid is typically the major tracer for conifer smoke in the atmosphere. Degradation products from biopolymers (e.g. levoglucosan from cellulose, methoxyphenols from lignin) are also excellent tracers. Additional markers of thermally-altered and directly-emitted natural products in smoke have been defined which aids the assessment of the organic matter types and input from biomass combustion to aerosols. The precursor to product approach of compound characterization by organic geochemistry has also been applied successfully to provide source specific tracers for studying the chemistry and dispersion of ambient aerosols and the intermingling of natural with anthropogenic emissions and with smoke plumes. A brief review of the organic matter composition in aerosols derived from the major sources is also given, with emphasis on the detection of biomass burning components. These major sources are the natural background from biogenic detritus (e.g. plant wax, microbes, etc.) and anthropogenic particle emissions (e.g. oils, soot, synthetics, compounds, etc.). The emissions of organic constituents in coal smoke particulate matter are also reviewed and depend on combustion temperature, ventilation, burn time, and coal rank (geologic maturity). The components of peat and brown coal and to a lesser degree semi-bituminous coal consist mainly of hydrocarbons, biomarkers, and aromatic components, quite similar to burning of contemporary biomass. Dispersion from the source and long range transport of smoke particulate matter with the associated organic compounds is also discussed.  相似文献   

12.
Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one.  相似文献   

13.
[研究目的]野火是陆地生态系统的一个重要组成部分,燃烧产生的温室气体会对气候环境产生影响.对地史时期古野火的研究可以获得野火对生态系统的潜在长期影响.[研究方法]采集了鄂尔多斯盆地侏罗纪延安组5个主采煤层的56个样品,并对其进行了宏观煤岩观察、煤岩显微组分定量、惰质组反射率测定、微观形貌观察.[研究结果]结果显示在煤层...  相似文献   

14.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   

15.
The microscopic charcoal content of several Quaternary pollen sequences is used to investigate fire history in South Africa both during the Holocene and the Late Pleistocene. Although fluctuations in charcoal composition are recorded, it is difficult to link them directly to either human‐made or natural fires. Strong long‐term variations in microscopic charcoal of Middle and Upper Pleistocene layers are independent of pollen indications of past temperature and moisture conditions. Holocene charcoal sequences from different areas show no correlation, so no phases of regional burning are found. Some fluctuations in charcoal probably are the result of local burning in the various regions. The arrival of Iron Age people some 2000 yr ago apparently did not coincide with widespread wild fires, as these events do not consistently appear in regional microscopic charcoal records. The only exception appears to be the Wonderkrater spring deposit. Relatively open savanna environments, which are implied by pollen analysis at some sites during this period and the generally low microscopic charcoal contents, were either caused by climate change or controlled burning by Iron Age people. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Coal fires in China consume vast amounts of fuel and cause serious environmental problems. Most of these coal fires are related to mining activity. However, naturally produced palaeo coal fires in Xinjiang, north‐west China, have been recognized via burnt rocks. The burnt rocks in the study area are found at different river terraces underlying unburnt alluvial and river terrace deposits. Several age groups of coal fires have been identified based on the positions of burnt rocks at river terraces and the relationship between the burnt rocks and the terrace deposits. These palaeo coal fires are: (1) Pliocene – Early Quaternary in age at 200 m above present river terrace deposits; (2) Middle Pleistocene in age, at > 90 m; (3) Late Pleistocene, at 90–70 m; (4) Holocene; (5) burnt rocks relating to active coal fires. Palaeomagnetic data of the burnt rocks from different terraces give normal remanent magnetization and help further to constrain the ages of the coal fires.  相似文献   

17.
Dong  Shaoyang  Jiang  Yusheng  Yu  Xiong 《Landslides》2021,18(7):2531-2545
Landslides - Increasing number of landslides occurred in the cold regions over the past decades due to rising temperature or forest fires associated with climate change. The instability of thawing...  相似文献   

18.
Forest fires are almost always heterogeneous, leaving less-disturbed sites that are potentially suitable as habitats for soil-dwelling creatures. The recovery of large soil animal communities after fires is therefore dependent on the spatial structure of the burned habitats. The role of locally less disturbed sites in the survival of soil macrofauna communities along with traditionally considered immigration from the surrounding undisturbed habitats is shown by the example of burnt areas located in three geographically distant regions of European Russia. Such unburned soil cover sites (perfugia) occupy 5–10% of the total burned habitats. Initially, perfugia are characterized by much higher (200–300% of the average across a burned area) diversity and abundance of soil fauna. A geostatistical method made it possible to estimate the perfugia size for soil macrofauna at 3–8 m.  相似文献   

19.
The change in atmospheric relative humidity affects the physical and optical properties of aerosol particles. It would be interesting to study the effect of an increase in relative humidity on the angular scattering of light by aerosols (by incorporating the changes due to it as the complex refractive index and the parameters of the size distribution function). In the present paper we have computed the angular scattering function for rural and urban aerosols, for light of wavelength 0.55 μn. The results obtained for these two models, representative of different environments, are interesting and show some discriminating features.  相似文献   

20.
The paper addresses influence of dust particles on the aerosol loading over the major deserts in the northern hemisphere. The role of dust aerosols in the total aerosol concentration and size distribution of the particles are analysed. It is observed that the aerosol loading is high in the northern hemisphere of which the deserts and adjoining areas in Asia and Africa play a leading role. Over the entire oceanic region, except some parts of the Atlantic Ocean near to the West coast of Africa and the Arabian Sea, aerosol loading is less. The Sahara Desert is the prominent source of dust aerosols throughout the year. The deserts of Asia are also prominent sources of dust aerosols on a global basis. Above 70% of the total aerosol optical depth (AOD) is contributed by the dust particles, reaching to around 90% during spring months March, April and May over the Sahara Desert, which is the major source of dust aerosols. Goddard Chemistry Aerosol Radiation and Transport model is used to estimate the dust aerosol concentration over the deserts of Asia and Africa. The model output almost agrees with the regions of dust loading obtained from the Envisat/SCIAMACHY. Hence, the model is reliable in estimating the dust aerosol loading over the major dust aerosol sources. The major portion of the total dust loading belongs to coarse mode particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号