首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The Campos, Santos and Pelotas basins have been investigated in terms of 2D seismo-stratigraphy and subsidence. The processes controlling accommodation space (e.g. eustacy, subsidence, sediment input) and the evolution of the three basins are discussed. Depositional seismic sequences in the syn-rift Barremian to the drift Holocene basin fill have been identified. In addition, the subsidence/uplift history has been numerically modeled including (i) sediment flux, (ii) sedimentary basin framework, (iii) relation to plate-tectonic reconfigurations, and (iv) mechanism of crustal extension. Although the initial rift development of the three basins is very similar, basin architecture, sedimentary infill and distribution differ considerably during the syn-rift sag to the drift basin stages. After widespread late Aptian–early Albian salt and carbonate deposition, shelf retrogradation dominated in the Campos Basin, whereas shelf progradation occurred in the Santos Basin. In the Tertiary, these basin fill styles were reversed: since the Paleogene, shelf progradation in the Campos Basin contrasts with overall retrogradation in the Santos Basin. In contrast, long-term Cretaceous–Paleogene shelf retrogradation and intense Neogene progradation characterize the Pelotas Basin. Its specific basin fill and architecture mainly resulted from the absence of salt deposition and deformation. These temporally and spatially varying successions were controlled by specific long-term subsidence/uplift trends. Onshore and offshore tectonism in the Campos and Santos basins affected the sediment flux history, distribution of the main depocenters and occurrence of hydrocarbon stratigraphic–structural traps. This is highlighted by the exhumation and erosion of the Serra do Mar, Serra da Mantiqueira and Ponta Grossa Arch in the hinterland, as well as salt tectonics in the offshore domain. The Pelotas Basin was less affected by changes in structural regimes until the Eocene, when the Andean orogeny caused uplift of the source areas. Flexural loading largely controlled its development and potential hydrocarbon traps are mainly stratigraphic.  相似文献   

2.
The tectonic mechanisms controlling how volcanic arcs migrate through space and geologic time within dynamic subduction environments is a fundamental tectonic process that remains poorly understood. This paper presents an integrated stratigraphic and tectonic evolution of Late Cretaceous to Recent volcanic arcs and associated basins in the southeastern Caribbean Sea using seismic reflection data, wide-angle seismic refraction data, well data, and onland geologic data. We propose a new tectonic model for the opening of the Grenada and Tobago basins and the 50-250-km eastward jump of arc volcanism from the Late Cretaceous Aves Ridge to the Miocene to Recent Lesser Antilles arc in the southeast Caribbean based on the mapping of three seismic megasequences. The striking similarity of the half-graben structure of the Grenada and Tobago basins that flank the Lesser Antilles arc, their similar smooth basement character, their similar deep-marine seismic facies, and their similar Paleogene sediment thickness mapped on a regional grid of seismic data suggest that the two basins formed as a single, saucer-shaped, oceanic crust Paleogene forearc basin adjacent to the now dormant Aves Ridge. This single forearc basin continued to extend and widen through flexural subsidence during the early to middle Eocene probably because of slow rollback of the subducting Atlantic oceanic slab. Rollback may have been accelerated by oblique collision of the southern Aves Ridge and southern Lesser Antilles arc with the South American continent. Uplift and growth of the southern Lesser Antilles arc divided the Grenada and Tobago basins by early to middle Miocene time. Inversion of normal faults and uplift effects along both edges of the Lesser Antilles arc are most pronounced in its southern zone of arc collision with the South American continent. The late Miocene to Recent depositional histories of the Grenada and Tobago basins are distinct because of isolation of the Grenada basin by growth and uplift of the Neogene Lesser Antilles volcanic ridge.  相似文献   

3.
The Pelotas Basin is the classical example of a volcanic passive margin displaying large wedges of seaward-dipping reflectors (SDR). The SDR fill entirely its rifts throughout the basin, characterizing the abundant syn-rift magmatism (133–113 Ma). The Paraná–Etendeka Large Igneous Province (LIP), adjacent to west, constituted the pre-rift magmatism (134–132 Ma). The interpretation of ultra-deep seismic lines showed a very different geology from the adjacent Santos, Campos and Espírito Santo Basins, which constitute examples of magma-poor passive margins. Besides displaying rifts totally filled by volcanic rocks, diverse continental crustal domains were defined in the Pelotas Basin, such as an outer domain, probably constituted by highly stretched and permeated continental igneous crust, and a highly reflective lower crust probably reflecting underplating.The analysis of rifting in this portion of the South Atlantic is based on seismic interpretation and on the distribution of regional linear magnetic anomalies. The lateral accretion of SDR to the east towards the future site of the breakup and the temporal relationship between their rift and sag geometries allows the reconstitution of the evolution of rifting in the basin. Breakup propagated from south to north in three stages (130–127.5; 127.5–125; 125–113 Ma) physically separated by oceanic fracture zones (FZ). The width of the stretched, thinned and heavily intruded continental crust also showed a three-stage increase in the same direction and at the same FZ. Consequently, the Continental-Oceanic Boundary (COB) shows three marked shifts, from west to east, from south to north, resulting into rift to margin segmentation. Rifting also propagated from west to east, in the direction of the final breakup, in each of the three segments defined. The importance of the Paraná–Etendeka LIP upon the overall history of rupturing and breakup of Western Gondwanaland seems to have been restricted in time and in space only to the Pelotas Basin.  相似文献   

4.
The Uruguayan continental margin comprises three sedimentary basins: the Punta del Este, Pelotas and Oriental del Plata basins, the genesis of which is related to the break-up of Gondwana and the opening of the Atlantic Ocean. Herein the continental margin of Uruguay is studied on the basis of 2D multichannel reflection seismic data, as well as gravity and magnetic surveys. As is typical of South Atlantic margins, the Uruguayan continental margin is of the volcanic rifted type. Large wedges of seaward-dipping reflectors (SDRs) are clearly recognizable in seismic sections. SDRs, flat-lying basalt flows, and a high-velocity lower crust (HVLC) form part of the transitional crust. The SDR sequence (subdivided into two wedges) has a maximum width of 85 km and is not continuous parallel to the margin, but is interrupted at the central portion of the Uruguayan margin. The oceanic crust is highly dissected by faults, which affect post-rift sediments. A depocenter over oceanic crust is reported (deepwater Pelotas Basin), and volcanic cones are observed in a few sections. The structure of continental crust-SDRs-flat flows-oceanic crust is reflected in the magnetic anomaly map. The positive free-air gravity anomaly is related to the shelf-break, while the most prominent positive magnetic anomaly is undoubtedly correlated to the landward edge of the SDR sequence. Given the attenuation, interruption and/or sinistral displacement of several features (most notably SDR sequence, magnetic anomalies and depocenters), we recognize a system of NW-SE trending transfer faults, here named Río de la Plata Transfer System (RPTS). Two tectono-structural segments separated by the RPTS can therefore be recognized in the Uruguayan continental margin: Segment I to the south and Segment II to the north.  相似文献   

5.
The northeastern part of the South China Sea is a special region in many aspects of its tectonics. Both recent drilling into the Mesozoic and new reflection seismic surveys in the area provide a huge amount of data, fostering new understanding of the continental margin basins and regional tectonic evolution. At least four half-grabens are developed within the Northern Depression of the Tainan Basin, and all are bounded on their southern edges by northwestward-dipping faults. One of the largest half-grabens is located immediately to the north of the Central Uplift and shows episodic uplift from the late Oligocene to late Miocene. Also during that period, the Central Uplift served in part as a material source to the Southern Depression of the Tainan Basin. The Southern Depression of the Tainan Basin is a trough structure with deep basement (up to 9 km below sealevel or 6 km beneath the sea bottom) and thick Cenozoic sedimentation (>6 km thick). Beneath the Southern Depression we identified a strong landward dipping reflector within the crustal layer that represents a significant crustal fault. This reflector coincides with a sharp boundary in crustal thicknesses and Moho depths. We show that the northeasternmost South China Sea basin, which may have undergone unique evolution since the late Mesozoic, is markedly different from the central South China Sea basin and the Huatung Basin, both geologically and geophysically. The Cenozoic evolution of the region was largely influenced by pre-existing weaknesses due to tectonic inheritance and transition. The South China Sea experienced multiple stages of Cenozoic extension.  相似文献   

6.
南极布兰斯菲尔德海峡及邻区地壳结构反演及构造解析   总被引:1,自引:0,他引:1  
马龙  邢健 《海洋与湖沼》2020,51(2):265-273
南极布兰斯菲尔德海峡及邻区是南极半岛海域火山、地震等新构造运动最活跃的地区,由于前人对资料处理解释的差异,导致盆地的构造格局仍部分存疑。本文以研究区的卫星重力数据为基础,以多道反射地震和部分岩性资料为约束,采用重震联合反演方法构建了三条横跨研究区的地壳结构剖面,并进一步研究布兰斯菲尔德海峡盆地的地壳结构。研究结果表明布兰斯菲尔德海峡盆地莫霍面深度为33—38km。菲尼克斯板块俯冲消减下沉至南设得兰岛弧之下,导致南设得兰海沟的俯冲带后撤,产生3—4km厚的岩浆混染地壳,密度为2.9g/cm~3。分析认为受板块运动和弧后扩张影响,沿布兰斯菲尔德海峡盆地扩张脊分布的海底火山裂隙式喷发,并进一步导致盆地的持续性扩张。  相似文献   

7.
Eleven seismic reflection profiles across Shirshov Ridge and the adjacent deep-water sedimentary basins (Komandorsky and Aleutian Basins) are presented to illustrate the sediment distribution in the western Bering Sea. A prominent seismic reflecting horizon, Reflector P (Middle—Late Miocene in age), is observed throughout both the Aleutian and Komandorsky Basins at an approximate subbottom depth of 1 km. This reflector is also present, in places, on the flanks and along the crest of Shirshov Ridge. The thickness of sediments beneath Reflector P is significantly different within the two abyssal basins. In the Aleutian Basin, the total subbottom depth to acoustic basement (basalt?) is about 4 km, while in the Komandorsky Basin the depth is about 2 km.Shirshov Ridge, a Cenozoic volcanic feature that separates the Aleutian and Komandorsky Basins, is an asymmetric bathymetric ridge characterized by thick sediments along its eastern flank and steep scarps on its western side. The southern portion of the ridge has more structural relief that includes several deep, sediment-filled basins along its summit.Velocity data from sonobuoy measurements indicate that acoustic basement in the Komandorsky Basin has an average compressional wave velocity of 5.90 km/sec. This value is considerably larger than the velocities measured for acoustic basement in the northwestern Aleutian Basin (about 5.00 km/sec) and in the central Aleutian Basin (5.40–5.57 km/sec). In the northwestern Aleutian Basin, the low-velocity acoustic basement may be volcaniclastic sediments or other indurated sediments that are overlying true basaltic basement. A refracting horizon with similar velocities (4.6–5.0 km/sec) as acoustic basement dips steeply beneath the Siberian continental margin, reaching a maximum subbottom depth of about 8 km. The thick welt of sediment at the base of the Siberian margin may be the result of sediment loading or tectonic depression prior to Late Cenozoic time.  相似文献   

8.
The Serranilla Basin is a flat-floored, semi-circular bathymetric depression (100×100 km; 1100–1200 m deep) at the western end of the northern Nicaragua Rise (NNR) in the Caribbean Sea. It is bound to the north by the Cayman Trough, an area of active sea floor spreading, and is part of the Northern Caribbean Plate Boundary Zone (NCPBZ). Single-channel, high-resolution seismic data were calibrated to rock dredges and ODP Site 1000 to define the geologic evolution and attempt to tie sequence formation within the basin to tectonic developments in this part of the Caribbean. Five seismic sequences were identified within the basin. The two lower sequences (A and B) are interpreted as neritic and shallow periplatform deposits which infill three distinct basins that make up the early to late Miocene Serranilla Basin. The three upper sequences (C through E) are interpreted as periplatform and pelagic deposits interspersed with turbidites, and in some areas, megabreccias. Faulting is prevalent in sequences A through C in the central basin, and becomes progressively younger toward the south, disrupting the seafloor in places and perhaps indicating renewed activity along the Pedro Fracture Zone. The timing of sequence boundary formation has been correlated to tectonic activity along the NCPBZ and closure of the Central American Seaway. Possible mechanisms of sequence boundary formation include tectonic tilting within the basin in conjunction with increased turbidite deposition, carbonate platform drowning and subsequent back-stepping associated with circulation changes resulting from tectonic ‘gateway' closure, and megabreccia deposition associated with bank demise. Although a direct genetic relationship is not proven, regional tectonic changes are considered more important than eustatic sea-level changes in controlling depositional sequence formation in the Serranilla Basin.  相似文献   

9.
南黄海盆地发育于前南华纪变质基底之上,是一个大型叠合盆地,经历了多期成盆和多期构造改造,形成了海相盆地和中新生代断陷盆地叠合改造型残留盆地。盆地演化历经南华纪—早、中三叠世海相地层发育期、晚白垩世—古近纪箕状断陷发育期和新近纪—第四纪坳陷发育期,为一典型地台—断陷—坳陷多层结构的复合型盆地。通过对地震资料解释、区域地质构造特征分析,综合烃源条件和后期保存条件,探讨了南黄海盆地油气远景。  相似文献   

10.
Six major seismic stratigraphic sequences in the Raggatt Basin on the southern Kerguelen Plateau overlie a basement complex of Cretaceous or greater age. The complex includes dipping reflectors which were apparently folded and eroded before the Raggatt Basin developed. The seismic stratigraphic sequences include a basal unit F, which fills depressions in basement; a thick unit, E, which has a mounded upper surface (volcanic or carbonate mounds); a depression-filling unit, D; a thick unit C which is partly Middle to Late Eocene; and two post-Eocene units, A and B, which are relatively thin and more limited in areal extent than the underlying sequences. A mid or Late Cretaceous erosional episode was followed by subsidence and basin development, interrupted by major erosion in the mid Tertiary. Late Cenozoic sedimentation was affected by vigorous ocean currents.  相似文献   

11.
The Bransfield Basin is a narrow and elongated active rift basin located between the Antarctic Peninsula and the South Shetland Islands. The Bransfield Basin is composed of three small basins, and two of them, the Central and Eastern Bransfield Basins, were surveyed during a recent cruise (GEBRA 93). The full swath bathymetry coverage as well as the single-channel seismic reflection and magnetic profiles that have been acquired, help us to better understand the morphostructure and recent evolution of the Bransfield Basin. Six large volcanic edifices aligned with the basin axis stick out of the sedimented seafloor of the Central Bransfield Basin. In contrast, the Eastern Bransfield Basin is characterised by four deep troughs displaying a rhombic-shape, and small, scattered volcanic cones located in the southwestern half basin. Seamount volcanism plays an important role in the formation of new crust in the Bransfield Basin. The larger seamounts of the Central Bransfield Basin are located at the intersection of the two main orthogonal sets of faults (longitudinal ENE-WSW and transversal NNW-SSE). Morphological analysis of the seamounts indicates a multi-staged volcano-tectonic construction. The distribution and shape of these edifices suggests that both volcanism and extension are concentrated at the same preferential areas through time. This might be related to the fracturation style of the continental crust. The Central and Eastern Bransfield Basins are very different in morphostructure, volcanism, and sedimentary cover. The Central Bransfield Basin shows evidence of NW-SE extensional faulting and focused active MORB-volcanism interpreted as result of incipient seafloor spreading. The Eastern Bransfield Basin is still in a rifting stage, mainly dominated by a NW-SE extension and some left-lateral strike-slip component probably related to the South Scotia Ridge.J. Acosta, J. Baraza, P. Bart, A.M. Calafat, J.L. Casamor, M. De Batist, G. Ercilla, G. Francés, E. Ramos, J.L. Sanz, and A. Tassone.  相似文献   

12.
Two-dimensional flexural backstripping and thermal modelling (assuming uniform stretching and cooling) is applied to four interpreted, depth-converted seismic profiles across the Rockall, Faroe–Shetland and Vøring basins, along 1600 km of the Atlantic continental margin of NW Europe. The results reveal a significant discrepancy between the modelled palaeo-depths for the base of the Cenozoic succession and those proven by geological evidence at control points (subaerial conditions or depositional depth ranges in wells). The discrepancy is of Rm-scale, much larger than the possible range of parameter error determined by sensitivity tests (up to 0.5 km). Assuming a Cretaceous rift episode (100 Ma), the discrepancy is at least 1.7 km in the Rockall Basin, up to 2.1 km in the Faroe–Shetland Basin and at least 1 km in the Vøring Basin (which also contains evidence of kilometre-scale uplift of the inner margin). Assuming (unproven) a second rift in the early Cenozoic (60 Ma), the discrepancy remains of kilometre-scale in the Rockall and Faroe–Shetland basins. The restorations also provide evidence of uplift, both above compressive structures and across the modelled profiles as seaward rotations of palaeo-bathymetric records. The palaeo-bathymetric discrepancy corresponds to an anomaly in subsidence that is the cumulative product of all the tectonic episodes that have affected the NW European margin, and may incorporate both permanent effects of the last episode of lithospheric extension and transient responses to the interaction of the margin with mantle convective flow. Any explanation must accommodate both the large magnitude of anomalous subsidence along the margin and evidence of its episodic character.  相似文献   

13.
A 700 km wide-angle reflection/refraction profile carried out in the central North Atlantic west of Ireland crossed the Erris Trough, Rockall Trough and Rockall Bank, and terminated in the western Hatton-Rockall Basin. The results reveal the presence of a number of sedimentary basins separated by basement highs. The Rockall Trough, with a sedimentary pile up to 5 km thick, is underlain by thinned continental crust 8–10 km thick. Some major fault block structures are identified, especially on the eastern margin of the Rockall Trough and in the adjacent Erris Trough. The Hatton-Rockall Basin is underlain by westward-thinning continental crust 22–10 km thick. Sedimentary strata are up to 5 km thick. The strata in the Rockall Trough and Hatton-Rockall Basin probably range in age from Late Palaeozoic to Cenozoic. However, the basins have different sedimentation histories and differ in structural style. The geometry of the crust and sediments suggests that the Rockall Trough originated by pure shear crustal stretching, associated with rift deposits and Cenozoic thermal sag strata. In contrast, the development of the Erris Trough, located on unthinned continental crust, was facilitated by shallow, brittle extension with little deep crustal attenuation. A two-layered crust occurs throughout the region. The lower crustal velocity in the Hatton-Rockall Basin is higher than that in the Rockall Trough. The velocity structure shows no indication of crustal underplating by upper mantle material in the region.  相似文献   

14.
The Early Cretaceous South Atlantic Magmatic Province (SAMP), which includes the Paraná-Etendeka LIP, produced about 8 million km3 of tholeiitic basalt and diabase over an area of 4 million km2. Huge pre-salt oil reserves, discovered in 2007 by Petrobras in non-marine carbonates, are estimated at more than 45 billion barrels. Here we show the close causal relationship of the southward increasing width of the wedge-shaped South Atlantic rift with the similarly southward increase in igneous activity, in the thicknesses of non-marine carbonate and salt, and in the size of oil reserves, all controlled mainly by South America’s early clockwise rotation away from Africa about a pole in its northeast. Large diabase dike swarms transversal to the rift witness to South America’s rotation that opened in its wake the southward widening South Atlantic rift. Westward increasing pressure on the Equatorial margin by South America’s clockwise rotation forced open the Benue trough and created pre-late-Aptian folds in the Demerara Plateau and in Brazil’s Solimões (Upper Amazonas) basin. Prerift and synrift volcanic activity increases southward, culminating in the Parana-Etendeka LIP and in the offshore volcanic SDRSs that continue southward to the Cape Basin. Berriasian-Valanginian rift sediments deposited from about 145 Ma, 10 Ma before the flood basalts of the Parana-Etendeka LIP. The largest transversal dike swarm continued in the proto-Walvis Ridge that separated the central South Atlantic endorheic rift basin from the sea in the south; erosion and leaching of basalts supplied Ca, Mg, and SiO2 to the endorheic basin for the deposition of non-marine carbonates and authigenic clays. Basalt flows intercalated with carbonates nearly until salt deposition about 113 Ma. Hypogenic leaching of carbonates by mantle-derived CO2 created optimal reservoirs. Supergiant oil deposits occur where the widest endorheic basin and the volcanic province overlap.  相似文献   

15.
Naresh Kumar   《Marine Geology》1979,30(3-4):175-191
In the equatorial Atlantic the Ceará and Sierra Leone rises lie on opposing sides of the mid-ocean ridge and are equidistant from its axis. The northern and southern boundaries respectively, of the two rises are formed by the same fracture zones. The area of shallowest acoustic basement under the Ceará Rise coincides with the presence of a 1–2 km thick seismic layer (velocity: 3.5 km/sec) lying over the oceanic layer 2. This 3.5 km/sec layer is interpreted as a sequence of volcanics which began erupting about 80 m.y. ago when the sites of the two rises lay at the ridge axis. As the “abnormal” volcanic activity ceased, the breakup of this volcanic pile into two pieces has formed the Ceará and Sierra Leone rises.

In the South Atlantic, the northern and southern boundaries of the Rio Grande Rise are also formed by fracture zones and an approximately 1 km thick layer with a velocity of 3.5 km/sec exists also under this rise. The same fracture zones appear to bound the Walvis Ridge. Drilling data suggests that both the Rio Grande Rise and Walvis Ridge have subsided continuously since their creation. The igneous rocks recovered from both rises consist of alkalic basaltic suites typical of oceanic volcanic islands. The existing data favor a model in which “excessive” volcanism along the same segment of the Mid-Atlantic Ridge created both the South Atlantic aseismic rises between 100 and 80 m.y. ago. In both the examples, the northern and southern boundaries of the rises are formed by the same fracture zones which originally bounded the abnormally active segment of the ridge axis.  相似文献   


16.
南黄海盆地是在前震旦系克拉通基础上发育的中、古生界海相与中、新生界陆相多旋回叠合盆地。通过地震资料解释,结合邻区钻井与区域地质资料,对南黄海盆地中部隆起中、古生代地层及其形成演化进行了研究,结果表明,南黄海盆地中部隆起沉积了较全的中、古生界海相地层,发育第四系—新近系、中—下三叠统青龙组、上二叠统、下二叠统—上泥盆统、中—下志留统,奥陶系—震旦系和前震旦系变质岩系等7套地震地质层序;主要经历了前震旦纪基底形成、震旦纪—早古生代克拉通发育、晚古生代—中三叠世稳定台地—陆内裂陷、晚三叠世—古近纪形成与抬升剥蚀及新近纪-第四纪坳陷沉降5个阶段。  相似文献   

17.
Igneous intrusions emplaced within the prospective intervals of sedimentary basins can exert a significant impact on petroleum systems and hence are of considerable interest particularly when risking exploration plays. A number of discordant high amplitude seismic anomalies (DSAs) with a range of geometries are documented in high resolution 3D seismic data in the northern South China Sea. Their distribution and seismic characteristics are analysed and compared with similar seismic anomalies documented within sedimentary basins in the Atlantic margins and other locations. The DSAs occur mainly within Early Miocene strata and are interpreted as igneous intrusions that were emplaced close to the palaeo-seabed and are dated as early Middle Miocene using seismic-stratigraphic methods. A number of vents are also identified above the intrusions within early Middle Miocene strata. Several geometrical forms are observed, referred to here as saucer-shaped, lensoid-shaped, stacked and composite intrusions. The seismic expression of these is increasing complex towards the palaeo-seabed, with a tendency for the saucer-shaped sills to be the deepest intrusive forms. The igneous intrusions observed in this study only could be identified using 3D seismic data and they are important for the future evaluations of petroleum systems, basin evolution and tectonic analysis in the Pearl River Mouth Basin.  相似文献   

18.
南亚地区含油气盆地类型及资源潜力分析   总被引:1,自引:1,他引:0  
南亚地区经历冈瓦纳陆内裂谷、冈瓦纳裂解与板块漂移及印度板块与欧亚板块的陆-陆碰撞复杂的构造演化,最终形成了以被动大陆边缘盆地为主的,包括克拉通盆地和俯冲-碰撞带盆地在内的3类沉积盆地,其中被动大陆边缘盆地分布广泛,形成了南亚地区的一个主要盆地群。本文通过对南亚盆地生、储、盖等石油地质条件分析,研究不同盆地类型的油气成藏特征。根据盆地的剩余可采储量和远景资源量对南亚地区的资源潜力进行分析,认为被动大陆边缘盆地油气资源潜力最大,并优选出奎师那-哥达瓦里盆地、孟买盆地和科弗里盆地3个有利盆地。  相似文献   

19.
本文用四种方法计算了南海的岩石圈厚度,并建立了南海海盆的岩石圈均衡模型。在此基础上,分析了南海海盆的岩石圈结构特征:即从海盆中部向南、北两侧,层3厚度、地壳厚度和岩石圈厚度逐渐增大,与地壳年龄呈正向关系。这表明,南海海盆有如大洋(大西洋)一样的形成演化机制—由正常的裂谷和扩张过程发育而成。  相似文献   

20.
Aeromagnetic data collected over the Offshore Mahanadi Basin along the Eastern margin of India display high amplitude magnetic anomalies. The presence of a Cretaceous volcanic sequence masks the seismic response from the underlying basement and results in poor quality seismic data. In this study spectral analysis of the aeromagnetic data collected over this part of the Offshore Mahanadi Basin was carried out. Results of this analysis indicate the presence of a high density, highvelocity (6.45 km/s) mafic layer within the crystalline basement varying from 4–6 km depth. This intra-basement layer seems to have been affected by a number of lineaments, which have played a role in the evolution of the Mahanadi Offshore Basin. The western part of the offshore basin is affected by the volcanism related to the 85°E Ridge, whereas the intense anomaly band (900 nT) offshore Puri, Konark and Paradip is interpreted as a combined effect of crystalline Precambrian basement overlain (i) by Cretaceous volcanic rocks of variable thickness (25–860 m) and (ii) by a mafic layer within the basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号