共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A physically‐based numerical model was developed to estimate the temporal course of the surface energy flux densities and the soil temperatures in dry and wet bare soils. Aerodynamic heat, vapour and momentum transfer theory was used to calculate the sensible and latent heat flux densities at the surface under diabatic and adiabatic conditions. A finite‐difference solution of the differential equation describing one‐dimensional heat transfer was used to calculate the surface soil heat flux density and soil profile temperatures. The surface temperature was determined iteratively by the simultaneous solution of equations describing radiative, heat and momentum transfer at the surface. The model was tested with measurements from energy balance studies conducted on a dry, sandy soil and a wet, silt loam soil, and was found to predict accurately the surface energy fluxes and soil temperatures over three‐day periods under conditions of potential and negligible evaporation. The sensitivity of the model to uncertainties in the aerodynamic roughness lengths for momentum (z0) and heat (zT) is reported. Values for z0 and Z0/ZT of 0.5 mm and 3.0, respectively, resulted in the best agreement between modelled and measured values of the fluxes and temperatures for both soils. 相似文献
2.
3.
Daytime variations of ozone eddy fluxes to maize 总被引:1,自引:0,他引:1
The vertical fluxes of ozone, momentum and heat in the atmospheric surface layer have been measured by eddy correlation above
both mature and senescent maize canopies. Aerodynamic formulae are applied to find that the bulk canopy surface resistancer
c
to ozone uptake and destruction varies between 4.0 and 0.5 s cm−1 during the daytime. Apparently, surface properties tend to control the removal of ozone at the surface of the earth. For
a lush canopy, the stomatal diffusion resistance is the most important property, while changes in surface temperature have
little effect. Destruction at the soil and exterior plant surfaces appears to account for 20–50% of the total loss if leaf
mesophyll resistances are assumed to be very small. Free water at leaf surfaces may at times inhibit ozone removal by both
senescent and healthy plants. 相似文献
4.
5.
Michael D. Novak 《Boundary-Layer Meteorology》1991,56(1-2):141-161
A model that couples the surface energy balance equation, a surface hydraulic resistance equation, and the force-restore soil temperature model to a mixed-layer model of the planetary boundary layer is described. The mixed layer is separated from the soil by a relatively thin surface layer and is overlain by a stable free atmosphere with prescribed profiles of potential temperature and water vapour density. The model is in reasonably good agreement with daytime micrometeorological measurements made at a wet bare site at Agassiz, British Columbia, and a desert site at Pampa de La Joya, Peru. The sensitivity of the mixed-layer model to conditions in the free atmosphere, to the parameters describing the growth of the mixed layer, and to surface roughness lengths, surface hydraulic resistance, and windspeed is examined. 相似文献
6.
Delany A. C. Fitzjarrald D. R. Lenschow D. H. Pearson R. Wendel G. J. Woodrufl B. 《Journal of Atmospheric Chemistry》1986,4(4):429-444
Using the eddy correlation method, fluxes of nitric oxide, nitrogen dioxide, ozone, water, and sensible heat were measured at a site 20 km north of Denver, Colorado over mature crested wheat grass, 0.75 m high in late June and early July. During this period the weather was fair with no synoptic disturbances. In the early morning a well-mixed diluted urban pollution plume traversed the site, by late morning aged pollution had mixed downward into the local boundary layer, and by afternoon the air came from a relatively unpolluted area of the high plains. The mean trace gas concentrations reflect this repeated pattern of local air flow. The fluxes of the trace gases were influenced both by the variation of the means and by other factors including temperature and biological activity. Ozone fluxes were found to be always negative and proportional to the mean, with an average deposition velocity for this case of about 0.006 m s-1. For the oxides of nitrogen this simple treatment was not appropriate. Both deposition and emission were observed, generally deposition predominated in the morning and emission in the afternoon with observed variations in the fluxes of NOx=NO+NO2 from –0.3 to +0.2 ppbv m s-1.The National Center for Atmospheric Research is sponsored by the National Science Foundation 相似文献
7.
Summary A fixed platform (Fig.3), installed 100 m from the shoreline in 3 m water depth, was instrumented with velocity, temperature and wave-height sensors. 132 data (10 minutes averages) were analysed to calculate the wind stress; from these, 99 data were used to investigate the vertical distribution of the wind stress; all data are presented with Table 1.It was postulated that the total stress,
t
being constant with height, is made up additively of two components, the wave-supporting stress,
w
, and the turbulent stress,
c
; see Eq. 1. The vertical distribution of these two components is shown schematically in Fig. 1.The total stress,
t
, evaluated outside the zone of wave influence, is given in the classical way with Fig. 4. The wave-supporting stress,
w
(z), was evaluated from the data according to a relation proposed by Kitaigorodskii et al. (1984); it is given with Fig. 5. A height-dependency is clearly evident. The turbulent stress
c
(z), was evaluated with data of the velocity gradient; it is given with Fig. 6. A height-dependency is not evident.The field data from the lake of Geneva give evidence that the additive relation of Eq. 1 seems to be justified.With 6 Figures 相似文献
8.
Effects of heat and water vapor transport on eddy covariance measurement of CO2 fluxes 总被引:2,自引:0,他引:2
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (=
cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux
c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e.,
c w = –
c w. Corrections for the mean convective flux are particularly significant for CO2 because
cw and
c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well. 相似文献
9.
Summary The performance of evaporation schemes with and approach and their combination within resistance representation of evaporation from bare soil surface is discussed. For this purpose nine schemes, based on different functions of or , on the ratio of the volumetric soil moisture content and its saturated value are used.The quality of the chosen schemes has been evaluated using the results of time integration by the coupled soil moisture and surface temperature prediction model, BARESOIL, using in situ data. A sensitivity analysis was made using two sets of data derived from the volumetric soil moisture content of the top soil layer. One with values below the wilting point (0.17 m3m–3) and the second with values above 0.20m3m–3. Data sets were obtained at the experimental site Rimski anevi, Yugoslavia, from the bare surface of a chernozem soil.With 4 Figures 相似文献
10.
Lokesh K. Sahu Shyam Lal Valérie Thouret Herman G. Smit 《Journal of Atmospheric Chemistry》2009,62(2):151-174
Tropospheric distributions of ozone (O3) and water vapor (H2O) have been presented based on the Measurements of OZone and water vapor by Airbus In-Service AirCraft (MOZAIC) data over the metro and capital city of Delhi, India during 1996–2001. The vertical mixing ratios of both O3 and H2O show strong seasonal variations. The mixing ratios of O3 were often below 40 ppbv near the surface and higher values were observed in the free troposphere during the seasons of winter
and spring. In the free troposphere, the high mixing ratio of O3 during the seasons of winter and spring are mainly due to the long-range transport of O3 and its precursors associated with the westerly-northwesterly circulation. In the lower and middle troposphere, the low mixing
ratios of ∼20–30 ppbv observed during the months of July–September are mainly due to prevailing summer monsoon circulation
over Indian subcontinent. The summer monsoon circulation, southwest (SW) wind flow, transports the O3-poor marine air from the Arabian Sea and Indian Ocean. The monthly averages of rainfall and mixing ratio of H2O show opposite seasonal cycles to that of O3 mixing ratio in the lower and middle troposphere. The change in the transport pattern also causes substantial seasonal variation
in the mixing ratio of H2O of 3–27 g/kg in the lower troposphere over Delhi. Except for some small-scale anomalies, the similar annual patterns in
the mixing ratios of O3 and H2O are repeated during the different years of 1996–2001. The case studies based on the profiles of O3, relative humidity (RH) and temperature show distinct features of vertical distribution over Delhi. The impacts of long range
transport of air mass from Africa, the Middle East, Indian Ocean and intrusions of stratospheric O3 have also been demonstrated using the back trajectory model and remote sensing data for biomass burning and forest fire activities. 相似文献
11.
Field measurements were carried out to calculate the threshold friction velocity for snow saltation, and mass fluxes during snow drift. The wind was measured in three components by an ultrasonic anemometer, and the mass fluxes were determined using an optical sensor (snow particle counter), acoustic sensors (Flowcapt) and mechanical traps. The threshold friction velocity was found to be correlated to the grain size (R2=0.75). The mass flux measurements were compared with numerical simulations of snow drift, and it was demonstrated that the maximum snow transport takes place at shear stress values of roughly two times the average shear stress over 20 min. By implementing a probability distribution for the shear stress the mass flux was simulated with only the mean measured value of the shear stress as input. This procedure enables the future use of the numerical model for operational applications. 相似文献
12.
John C. Wyngaard 《Boundary-Layer Meteorology》1990,50(1-4):49-75
I outline the general features of the vertical profile of the vertical flux of a conservative scalar in the planetary boundary layer, giving special emphasis to the convective case and emphasizing the importance of the Webb correction. After the influence of thermal stability on the structure of the turbulent eddies carrying this flux is reviewed, recent developments in parameterizing vertical transport in the convective boundary layer are discussed. I then survey three approaches to the numerical modeling of this transport — second-order closure, large-eddy simulation, and direct numerical simulation. Eddy-correlation, eddy-accumulation, and indirect techniques for measuring scalar fluxes are surveyed and contrasted. Finally, I discuss the physics of probe-induced flow distortion and its impact on scalar flux measurement, showing that it can be quite severe for trace species density fluxes measured from aircraft.Based on lectures given at the workshop Measurement and Parameterization of Land-Surface Evaporation Fluxes, Banyuls, France, October, 1988.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
13.
Boundary-Layer Meteorology - The possibility of measuring heat and moisture fluxes using sonic anemometer data is investigated. Theoretical relations for the temperature variance and heat flux are... 相似文献
14.
15.
16.
《大气与海洋》2013,51(4):259-272
Abstract A physically‐based multi‐layer numerical model is developed to determine the coupled transport of heat and water in the soil and in the soil‐atmosphere boundary layer. Using inputs of standard weather data and initial soil conditions the model is capable of predicting the surface energy balance components as well as water content and temperature profiles in the soil. It is used to predict these variables for a bare silt loam soil under two tillage treatments, viz. culti‐packed and left loose after disc‐harrowing, and the predicted results are compared with measurements. Very good agreement between the model predictions and measured evaporation and heat fluxes and soil water and temperatures for a ten‐day period shows that the model is capable of simulating the coupled transport of soil heat and soil water and their transfer across the soil surface‐atmosphere interface adequately. Model predictions were compared with those of CLASS (Canadian Land Surface Scheme). It is shown that CLASS, version 2.6, provides good estimates of evaporation and hence the latent heat flux density, QE, under wetter soil conditions, but overestimates QE at moderately wet soil conditions and underestimates it under dry soil conditions. Under dry to moderately wet soil conditions the calculation of evaporation from bare soil is very sensitive to the thickness of the top layer particularly as the thickness approaches 10 cm. 相似文献
17.
Robert J Oglesby 《Climate Dynamics》1990,4(4):219-235
We present results from numerical experiments made with a GCM, the NCAR CCM1, that were designed to estimate the annual balance between snow-fall accumulation and ablation for geographically important land regions for a variety of conditions. We also attempt to assess the reliability of these results by investigating model sensitivity to changes in prescribed physical parameters. Experiments were run with an initial imposition of 1 m of (midwinter) snowcover over all northern hemisphere land points. Over Alaska, western Canada, Siberia, and the Tibetan Plateau the model tended to retain this snow cover through the summer and in some cases increase its depth as well. We define these regions as glaciation sensitive and note some correspondence between them and source regions for the Pleistocene ice sheets. An experiment with greatly reduced CO2 (100 ppm) showed a tendency towards spontaneous glaciation, i.e., the model remained snow-covered throughout the summer over the same geographic regions noted above. With 200 ppm CO2 (roughly equal to values at the last glacial maximum), snow cover over these regions did not quite survive the summer on a consistent basis. Combining 200 ppm CO2 and 1 m of initial northern hemisphere snow cover yielded glaciation-sensitive conditions, agreeing remarkably well with locations undergoing glaciation during the Pleistocene. To assess the reliability of these results, we have determined minimal model uncertainty by varying two of the empirical coefficients in the model within physically plausible ranges. In one case surface roughness of all ocean gridpoints was reduced by an order of magnitude, leading to local 10% reductions in precipitation (snowfall), a change hard to distinguish from inherent model variability. In the other case, the fraction of a land grid square assumed to be occupied by snow cover for albedo purposes was varied from one-half to unity. Large changes occurred in the degree of summer melting, and in some cases the sign of the net balance changed as fractional snow cover was changed. We conclude that the model may be able to reveal regions sensitive to glaciation, but that it cannot yield a reliable quantitative computation of the magnitude of the net snow accumulation that can be implicitly or explicitly integrated through time.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dilmenil 相似文献
18.
The role of dew in the water and heat balance of bare loess soil in the Negev Desert: quantifying the actual dew deposition on the soil surface 总被引:3,自引:0,他引:3
During nighttime, latent heat fluxes to or from the soil surface are usually very small and the absolute amounts of dew deposition are accordingly very small. The detection of such small fluxes poses serious measurement difficulties. Various methods for measuring dew have been described in the literature and most of them rely on the use of artificial condensing plates with physical properties that are very different from those of soil surfaces. A system that detects the actual dew deposition on the soil surface under natural conditions would be advantageous and microlysimeters (MLs) appear to be the obvious answer. The objectives of this work were to test the adequacy of microlysimeters to estimate condensation amounts, and to compare these amounts with those measured by a Hiltner dew balance in order to validate the long term data collected using the latter. The research was carried out at the Wadi Mashash Experimental Farm in the Northern Negev, Israel, during two measurement periods. A micro-meteorological station was installed in the field next to a modified Hiltner balance. A microlysimeter with an undisturbed soil sample was placed nearby. During the first period, the depth of the microlysimeter was 15 cm while at the second period it was 55 cm. The results show that for measuring dew, the minimum depth of a microlysimeter should exceed the depth at which the diurnal temperature is constant, which for a dry loess soil in the Negev Desert is 50 cm. 相似文献
19.
Mary Anne Carroll Leroy E. Heidt Ralph J. Cicerone Ronald G. Prinn 《Journal of Atmospheric Chemistry》1986,4(3):375-395
The diurnal-to-monthly behavior of the fluxes of OCS, H2S, and CS2 from a mixed-Spartina grass-covered site in a Wallops Island salt water marsh was determined through a series of experiments in August and September, 1982. Absolute flux values were determined for OCS and H2S, while only relative values were determined for CS2. The rates of emission of OCS and H2S were observed to vary diurnally and to be strongly influenced by tides. The time-averaged flux values show that such mixed-Spartina stands are insignificant ( 1%) global sources of H2S or CS2 and insignificant contributors to the global OCS cycle (< 1%). These results demonstrate that some marsh regions play a minor role in the global sulfur budget and, consequently, that the inclusion of such areas in extrapolations of measurements of more productive regions could lead to an overestimate of the role of salt water marshes in the global sulfur budget. 相似文献
20.
Fluxes of CO2, water vapor and sensible heat were measured in a grassland ecosystem near Manhattan, Kansas, employing the eddy correlation technique. The vegetation at this site is dominated by big bluestem (Andropogon gerardii), switchgrass (Panicum virgatum), and indiangrass (Sorghastrum nutans). Diurnal patterns of the energy budget components and CO2 fluxes are evaluated on a few selected days. Influence of high atmospheric evaporative demand and low availability of soil water are examined on (a) energy partitioning, and (b) the magnitudes and patterns of atmospheric carbon dioxide exchange.Published as Paper No. 8470, Journal Series, Nebraska Agricultural Research Division. 相似文献