首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Effects of reduced salinity on the oxygen consumption rate (OCR) and the ammonia-N excretion rate (AER) of scallopChlamys farreri (3.2–5.9 cm in shell height, 0.147–1.635 g in soft tissue dry weight) were studied in laboratory from March 21, 1997 to April 16, 1997. Under the controlled conditions of reduced salinity from 31.5 to 15.0 and ambient temperature 17°C and 23°C, the concentrations of dissolved oxygen and ammonia-N were determined by the Winkle method and the hypobromite method, respectively. Results showed that with controlled reduced salinity, the mean values of the OCR were 2.17 mg/(g.h) at 17°C, and 2.86 mg/(g.h) at 23°C and that the mean values of the AER were 178.0 μg/(g.h) at 17°C and 147.0 μg/(g.h) at 23°C. The OCR and the AER decreased with reducing salinity from 31.5 to 15.0 both at 17°C and 23°C. The effects of reduced salinity on the OCR and the AER of scallopC. farreri could be represented by the allometric equation and the exponential equation, respectively. Contribution No. 3295 from the Institute of Oceanology, Chinese Academy of Sciences. Project supported by the National Ministry of Science and Technology of China and by the Chinese Academy of Sciences, Grant No. 96-922-02-04 and KZ951-A1-102-02.  相似文献   

2.
Effects of temperature on oxygen consumption rate (OCR) and ammonia—N excretion rate of scallopChlamys farreri (1.7–6.2 cm in shell height) were studied in laboratory from Dec. 30,1996 to Jan. 28,1997. Under the controlled conditions of ambient water temperature 10–31°C and salinity 32, the concentrations of dissolved oxygen and ammonia—N were determined by the Winkle method and the hypobromite method, respectively. Results showed that the OCR ranged from 1.20 mg/g (DW) · h to 5.76 mg/g (DW) · h. The OCR increased with temperature from 10°C to 23°C, but at 28°C the OCR of mature individuals decreased, and that of different size scallops reduced at 31°C. The ammonia—N excretion rate ranged from 113.03 μg NH4-N/g (DW) · h to 486.63 μg NH4-N/g (DW) · h, and increased with temperature from 10°C to 31°C. Contribution No.3180 from the Institute of Oceanology, Chinese Academy of Sciences. This work was supported by the National Commission of Science and Technology of China, Grant No.96-922-02-04.  相似文献   

3.
The effects of 60-day starvation on survival rate. condition index (CI) , changes ofnutrient composition of different tissues, respiration and excretion of scallop ChlartnCs farreri were studiedin laboratory from Oct. 17 to Dec. 15 ,1997. Two groups (control and starvation with 200 individualseach) were cultured in two 2 m3 tanks, with 31 to 32 salinity water at 1 7 “C . Starvation effects were mea-sured alter 1 0, 20, 40 and 60 days. There was no mass mortality of scallops cf the two tanks and survivalrates of the control and starvation groups were 93 .5 % and 92.0 %, respectively. Starvation had strongeffect on the meat condition of the scallops, especially after 10 days; when relative lipid percentagedropped sharply while relative protein percentage increased. The impact of starvation on the oxygen consumption mtc (OCR) and the ammonia-N cxcretion mtc (AER) was obvious.  相似文献   

4.
Polychaete Neanthes japonica is a species geographically specific in China and Japan with important scientific implication and commercial value. In this study, the relations of body weight, salinity and temperature to oxygen consumption and ammonia excretion of N. japonica were determined. Three different groups in body weight (large: 2.34±0.36 g, middle: 1.50±0.21 g and small: 0.62±0.12 g) were set for all experiments. Results show that the body weight is negatively related to the rates of oxygen consumption and ammonia excretion; and the relationship is significant. The oxygen consumption and ammonia excretion at 24°C decreased at salinity from 5 to 30 and increased above 30, indicating that both lower and higher salinity are adverse and certain degree of salinity stress is necessary for enhancing the energy demand. At salinity 30, rising temperature from 18°C to 30°C, the oxygen consumption increased before 27°C and then decreased. However, the relation of ammonia excretion and temperature seems more complex. Two-way ANOVA shows that salinity, temperature and body weight all have a significant effect on the oxygen consumption and ammonia excretion of the worm. Moreover, interaction between salinity/temperature and body weight is also significant. O:N (oxygen/nitrogen) ratio varies greatly in this case from 5.97 to 463.22, indicating that N. japonica can regulate the type of metabolic substrate against environment changes. Supported by the National Natural Science Foundation of China (No. 30490233) and the Three-Gorge Project and the Estuarine Environment (No. SX2004-018) from the Three Gorges Project Construction Committee  相似文献   

5.
Competition among HAB (Harmful Algal Bloom) species Dinoflagellate Alexandrium tamarense, Raphidophyte Heterosigma carterae, and Diatom Skeletonema costatum was studied in the laboratory. Experiments with these three major HAB species under combinations of different salinities (10, 18, 25, 30, 35) and temperatures (19℃, 25℃) were carried out. The results showed that S. costatum successfully competed with the other two species at salinities of 18, 25,30, and 35 at temperatures of 19℃ and 25℃. However, H. carterae showed its advantage at low salinity of 10 and became the single dominant species at salinity 10 and 25℃. A. tamarense could not compete successfully with the other two species especially at low salinities. However, it could remain at low density in the presence of higher densities of other algae.  相似文献   

6.
Zygotes of Pacific oyster (Crassostrea gigas) were treated for triploid induction with caffeine (10 mmol/L, 15mmol/L and 20mmol/L) in combination with thermal shocks (at 40 minute post-fertilization) lasting for 5 and 10 minutes. The highest yield of triploids, 41.5%, was obtained from the treatment with 20 mmol/L caffeine at 34°C lasting 10 minutes. The triploid levels were less than 30.0% in other treatments. Triploid induction was more effective in treatment with 15–20 mmol/L caffeine at 34–38 °C than with lower concentrations of caffeine at temperatures below 32 °C. Our results suggest that triploid induction with caffeine in combination with thermal shocks is less efficient than some other methods reported previously.  相似文献   

7.
Growth and energy budget of the polychaete, Neanthes japonica, at various temperatures (17, 20, 23, 26 and 29°) were investigated in this study. The growth, as indicated by final dry weight and specific growth rate (SGR), increased with increasing temperature, with the maximum level at 26°C, and then decreased significantly at 29°C. A similar trend was observed in feeding rate, food conversion efficiency (FCE) and apparent digestive rate (ADR). However, no significant differences were detected in ADR among all the temperature treatments. In the pattern of energy allocation, faeces energy was only a small component of energy budget and had little influence on the proportion of food energy allocated to growth. The metabolic energy accounted for a large portion of energy intake for each temperature treatment. The nitrogen excretion was appreciable with changing temperature. The two expenditure terms (respiration energy and excretion energy) in energy budget were the major factors influencing the proportion of food energy allocated to growth. These results revealed that temperature affected the growth of N. japonica mainly by influencing feeding rate and FCE. In addition, regression equations describing the relationship between feeding rate, faecal production, SGR, FCE and temperature were obtained. The optimum temperatures for feeding rate, FCE and SGR were estimated at 25.01°C, 24.24°C and 24.73°C, respectively, from the regression equations.  相似文献   

8.
With increasing demand in China for the mitten crab larvae, understanding its survival mechanism gets more important. This research focused on the effects of temperature and Ca^2 on the larval growth and development. Eriocheir sinensis larvae were reared in laboratory under 21 different combinations of temperature (15, 20, 25℃) and Ca^2 content (120, 130, 140, 150, 160, 170, 180mg/l) and constant salinity (20) and pH (8), The results suggested that the survival rate increases with temperature and Ca^2 content. These combinations of temperature and Ca2 content maximized survival rate inour study and it may be the optimum water environmental conditions for culturing the larvae. To predict surviving larvae number under different water environmental conditions, 21 dynamic mathematical models were developed. This for the first time observation of the zoeal Ⅵ larvae of the Changjiang River E.sinensis population showed that they occurred under stressed water environmental conditions: temperature of 15℃ and Ca^2 content of 120,130mg/l.  相似文献   

9.
3-factor experiment was used to study the combined effects of temperature, irradiance and salinity on the growth of an HAB species diatomSkeletonema costatum (Grev.) Cleve. The results showed that temperature (12, 19, 25, 32 °C), irradiance (0.02, 0.08, 0.3, 1.6)×1016 quanta/(s·cm2)) and salinity (10, 18, 25, 30, 35) significantly influenced the growth of this species. There were interactive effects between any two of and among all three physical factors on the growth. In the experiment, the most optimal growth condition forS. costatum was temperature of 25°C, salinity of 18–35 and irradiance of 1.6×1016 quanta/(s·cm2). The results indicatedS. costatum could divide at higher rate and were more likely to bloom under high temperature and high illumination from spring to fall. It was able to distribute widely in ocean and estuary due to its adaptation to a wide range of salinities. This study was supported by the PREPP and National Key Basic Research Project (2001CB4097) NNSFC No. 39950001, 20177023, 49576301, 49906007 and KZCX2-206.  相似文献   

10.
Effects of temperature, salinity and light intensity on growth rates of Gracilaria lichenoides and G. tenuistipitata var. liui Zhang et Xia were tested. Eight to ten levels of each factor were first tested separately. The best growth rate was obtained under the conditions of 32°C, 30 and 240 μmol/(m2·s) for G. lichenoides, and 24°C, 20 and 200 μmol/(m2·s) for G. tenuistipitata, respectively. Then a uniform design was used to evaluate the optimal combinations of the three factors. The best conditions for the highest daily specific growth rates (% increase in wet weight) are determined to be 31.30°C, 32.10, and 287.23 μmol/(m2·s) for G. lichenoides (16.26%/d), and 25.38°C, 21.10, and 229.07 μmol/(m2·s) for G. tenuistipitata (14.83%/d), respectively. Supported by the 908 Special Program (908-02-04-07), the National Basic Research Program of China (973 Program, No. 2006CB400608), and K. C. Wong Magna Fund in Ningbo University  相似文献   

11.
This study aimed to evaluate the potential impacts of an introduced clam Mercenaria mercenaria on estuarine ecosystem, and implications for the niche competition with a native clam Meretrix meretrix. The biodeposition, respiration, and excretion rates of M. mercenaria were determined seasonally using a sediment trap and a closed respirator in field. The biodeposition rates of M. mercenaria were 0.06–0.37 g/ (ind.·d), and the respiration rates were 0.31–14.66 mg/(ind.·d). The ammonia and phosphate excretion rates were 0.18–36.70 and 1.44–14.87 μg/(ind.·d), respectively. The hard clam M. mercenaria may discharge dry deposits up to 2.1×105 t, contribute 18.3 t ammonia and 9.0 t phosphate to culture ponds, and consume 7.9×103 t O2 from ponds annually. It suggested that the hard clam M. mercenaria might play an important role in pelagic-benthic coupling in pond ecosystem through biodeposition and excretion. A comparison of the key physiological parameters of the introduced clam M. mercenaria and the native clam Meretrix meretrix suggested that M. mercenaria had a niche similar to that of Meretrix meretrix in Shuangtaizi estuary and might have a potential competition with Meretrix meretrix for habitat and food if M. mercenaria species escaped from the culture pond or artificially released in estuarine ecosystem.  相似文献   

12.
Over the past few years, harmful algal blooms (HABs), such as red tides, have been frequently observed in coastal zones worldwide. The natural allelopathic interactions among macroalgae and red tide microalgae can alter the structure and succession of aquatic ecosystems. We investigated the influence of four environmental factors (temperature, salinity, light, and pH) on the allelopathic effects of the macroalgae Corallina pilulifera on red-tide forming Heterosigma akashiwo under laboratory conditions. Each of the factors had four levels: temperature (15, 20, 25, and 30°C), salinity (10, 20, 30, and 40), light (20, 100, 200 and 400 μmol/(m2?s)), and pH (5.5, 7, 8.5, and 10. Two-factor experiments were designed for each two environmental factors, with six combination treatments (temperature-salinity, temperature-light, temperature-pH, salinity-light, salinity-pH, and light-pH). Results showed that the allelopathic effect was significantly influenced by temperature, salinity, light, and pH. As single factors, the low temperature (15°C), low salinity (10), high-intensity light (400 μmol/(m2?s)), and high pH (10) treatments substantially enhanced the allelopathic effect. The strongest allelopathic effect of C. pilulifera on H. akashiwo was observed under the following treatments: 15°C and salinity of 40, 25°C and pH 10, 25°C with medium- to high-intensity light at 200–400 μmol/(m 2 ?s), 400 μmol/(m2?s) and salinity of 10, 400 μmol/(m2?s) and pH 10, and pH 10 with a salinity of 40.  相似文献   

13.
Seagrass restoration as part of ocean ecosystem protection has been launched for many years all over the world, but intensive research on this subject in China has just begun in recent years. Seed broadcasting has been widely accepted as the most potentially useful method for seagrass restoration over large areas. We examined the influence of key environmental factors on seed germination to help promote eelgrass bed restoration. Under anoxic conditions, the influence of temperature and salinity on the germination rate of eelgrass (Zostera marina L.) seeds was examined at different combinations of four temperatures (4, 9, 14, and 24°C) and nine salinities (5 to 45, increment of 5). The effect of significant interaction of temperature and salinity on germination rate was observed (ANOVA) (P<0.001). The highest germination rate (83.3 ± 3.5)% was reached in 8 weeks at 14°C and salinity 5. Higher temperature significantly increased the germination rate at salinity 5 (P<0.001) during the whole observation period except for 24°C, while lower salinity significantly increased the germination rate at 14°C (P<0.001). Although significant interaction was found between temperature and salinity (P<0.001), the influence of salinity was stronger than that of temperature for the germination of eelgrass seeds. These results provide useful information for the propagation of artificial seedlings for seagrass restoration in China.  相似文献   

14.
15.
1 INTRODUCTION Chironomid larvae are main groups in most aquatic ecosystems, playing a crucial ecological role in decomposition of detritus and material ex- changes between water column and the sediment (Liang et al., 1995a, b; Chen, et al., 1982). They a…  相似文献   

16.
Crustacean zooplankton form the keystone link between primary producers and fish stocks in marine and estuary ecosystems. We have established a multi-generation cultivation system for zooplankton with which future experiments on the biological effects of pollutants in marine and estuary environments can be better performed. A population of calanoid copepod, Schmakeria poplesia, was collected in December 2003 and maintained in a static system through all stages (eggs to adults). The population exhibited an average developmental time of 13.6 d in conditions corresponding to the natural environment (water temperature 20°C, salinity 15). A series of experiments were performed to examine copepod egg production and hatching success as functions of food type and feeding concentration. Results in our study showed that Isochrysis galbana was more favored for the reproduction of copepods than Phaeodactylum tricornutum, and 10×104cells mL−1 was the most practical algae concentration. We have demonstrated that the Schmakeria poplesia population can be maintained in the laboratory through multiple generations. In addition, methods to control egg production through changes in food concentration have been established, making it feasible to control the start date of exposure experiments or the timing of the collection of offspring to initiate a new generation.  相似文献   

17.
This study deals with contribution of artificial food pellet and natural food to Chinese prawn (Penaeus orientalis) growth in a semiintensive culture pond. The prawn carbon consumption, budget, and the effects of some factors on the budget were investigated. The results showed that 26.2% of P. orientalis growth carbon came from formulated feed at the initial culture stage (when the prawns were 0.06±0.01 g in wet weight), and was 62.5% when the prawns were 9.56±1.04 g. The remaining part of the growth carbon was derived from organic fertilizer and natural food. The highest growth rate occurred at 20×10-3 salinity. Suitable salinity for culturing Chinese prawn was (20-28)×10-3.  相似文献   

18.
This experiment was conducted to examine the effects of salinity fluctuation frequency on the growth, molting rate and hemolymph 20-hydroxyecdysone (20-HE) concentration for juvenile Fenneropenaeus chinensis with an initial wet body weight of 1.115 g±0.012 g. The salinity of the control treatment (represented by D0) was 28 throughout the experiment, whereas treatments D2, D4, D6 and D8 were subjected to different salinity fluctuation frequencies of 2, 4, 6 and 8 d, respectively. The range of salinity fluctuation was 4. The salinity in treatments D2, D4, D6 and D8 was kept at 28 for 2, 4, 6 and 8 d, respectively; each original salinity was decreased abruptly to salinity 24, which first lasted for another 2 d and was then raised to its initial value 28. This constituted a salinity fluctuation cycle and afterwards the cycle repeated. It was found that: 1) The weight gain of shrimp in treatment D4 was 202.9% and significantly higher than that in treatment D0 (P<0.05). The molting rate in treatment D2 was the lowest, while that in treatment D6 was the highest and significantly higher than those in treatments D0 and D2 (P<0.05). 2) The hemolymph 20-HE concentration of shrimps in all treatments was at low levels and increased first gradually during the inter-molt period and then increased sharply. It reached a peak value during the pre-molt stage, and then decreased abruptly during the post-molt stage when the lowest level occurred. 3) During the post-molt stage, the hemolymph 20-HE concentration in treatment D2 was 7.47 pg μL−1 and significantly higher than that in treatment D0 (P<0.05). There were, however, no significant differences in hemolymph 20-HE concentration among all five treatments during the inter-molt stage (P>0.05). During the pre-molt stage, the hemolymph 20-HE concentration in treatment D6 was significantly higher than that in treatment D0 (P<0.05), whereas the hemolymph 20-HE concentration in treatment D2 was significantly lower than that in other treatments (P<0.05). Adequate salinity fluctuation promoted the molting rate through increasing hemolymph 20-HE concentration at the pre-molt stage.  相似文献   

19.
The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20℃ with the temperature being set at 20, 24, and 28℃. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.  相似文献   

20.
Jiang  Weiwei  Du  Meirong  Fang  Jianguang  Gao  Yaping  Mao  Yuze  Chen  Qionglin  Lin  Fan  Jiang  Zengjie 《中国海洋湖沼学报》2019,37(1):321-329

Water temperature is generally considered to be a major factor affecting the physiological and biochemical activities of marine bivalves. Here, the physiological and biochemical responses of Yesso scallop, Patinopecten yessoensis, to acute water temperature changes in summer were studied. Scallops were transferred directly to a lower temperature (Tdec treatment) (from 23°C to 15°C) or to a higher temperature (Tdec treatment) (from 15°C to 23°C) for 72 h, respectively. Results showed that the oxygen consumption and ammonia-N excretion rates of P. yessoensis decreased significantly in the Tdec treatment but increased dramatically at 6 h in the Tdec treatment (P <0.05). In the T dec treatment, hepatopancreas antioxidant enzyme activities, superoxide dismutase (SOD) and catalase (CAT) activities, increased substantially within 72 h (P <0.05). However, a significant decrease in CAT activity was found at 12 h in the Tdec treatment (P <0.01). A significant enhancement of acid phosphatase (ACP) activity and malondialdehyde (MDA) content was detected when scallops were acutely exposed to a temperature of 15°C. The levels of Cu/Zn-SOD gene expression in their gills up-regulated significantly in response to acute temperature changes (P <0.01). These data suggest that acute temperature change affects physiological and biochemical functions, and improve our knowledge of P. yessoensis under conditions of thermal stress.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号