首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Geodynamics》2010,49(3-5):331-339
The Free Core Nutation (FCN) is investigated with the help of its resonance effect on the tidal amplitudes in Superconducting Gravimeter (SG) records of the GGP network. The FCN resonance parameters are combined in a resonance equation involving the Earth's interior parameters. The sensitivity of the FCN parameters to the diurnal tidal waves demonstrates that the quality factor of the FCN is strongly dependent on the accuracy of the imaginary part estimates of the gravimetric factors close to the resonance. The weak amplitude of Ψ1 tidal wave on the Earth, which is the closest in frequency to the FCN, in addition to errors in ocean loading correction, explains the poor determination of the quality factor Q from surface gravimetric data. The inversion of tidal gravimetric factors leads to estimates of the period, Q and resonance strength of the FCN. We show that, by inverting log(Q) instead of Q, the results using the least-squares method optimized using the Levenberg–Marquardt algorithm are in agreement with the Bayesian probabilistic results and agree with the results obtained from VLBI nutation data. Finally, a combined inversion of 7 GGP European SG data is performed giving T = 428 ± 3 days and 7762 < Q < 31,989 (90% C.I.). An experimental estimate of the internal pressure Love number is also proposed.  相似文献   

2.
The single backscattering model was used to estimate total attenuation of coda waves (Qc) of local earthquakes recorded on eight seismological stations in the complex area of the western continental Croatia. We estimated Q0 and n, parameters of the frequency dependent coda-Q using the relation Qc = Q0fn. Lapse time dependence of these parameters was studied using a constant 30 s long time window that was slid along the coda of seismograms. Obtained Qc were distributed into classes according to their lapse time, tL. For tL = 20–50 s we estimated Q0 = 45–184 and n = 0.49–0.94, and for tL = 60–100 s we obtained Q0 = 119–316 and n = 0.37–0.82. There is a tendency of decrease of parameter n with increasing Q0, and vice versa. The rates of change of both Q0 and n seem to decrease for lapse times larger than 50–80 s, indicating an alteration in rock properties controlling coda attenuation at depths of about 100–160 km. A very good correlation was found between the frequency dependence parameter n and the Moho depths for lapse times of 50, 60 and 70 s.  相似文献   

3.
The attenuation properties of the lithosphere in the Bam region, East-Central Iran, have been investigated. For this purpose, 42 local earthquakes having focal depths less than 25 km have been used. The quality factor of coda waves (Qc) has been estimated using the single back-scattering model. The quality factors Qp, Qd (P and direct S-waves) have been estimated using the extended-coda normalization method. Qi and Qs (the intrinsic and scattering attenuation parameters) have been estimated for the region. The values of Qp, Qd, Qc, Qi and Qs show a dependence on frequency in the range of 1.5–24 Hz for the Bam region. The average frequency-dependent relationships estimated for the region are Qp=(36±6)f(1.03±0.06), Qd=(59±8)f(1.00±0.03), Qc=(79±5)f(1.01±0.04), Qs=(131±4)f(1.01±0.04) and Qi=(104±6)f(1.01±0.05). A comparison between Qi and Qs shows that intrinsic absorption is predominant over scattering.The variation of Q has also been estimated at different lapse times to observe heterogeneities variation with depth. The variation of Q with frequency and lapse time shows that the lithosphere becomes more homogeneous with depth.The estimated Qo values at different stations suggest a low value of Q indicating a heterogeneous and attenuative crust beneath the entire region.  相似文献   

4.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

5.
In Ottawa, Canada, unusually high amplification ratios have recently been measured in clayey silts (called ‘Leda Clays’) at low levels of earthquake-induced ground shaking. However, the contribution of seismic Q, or material damping (ξ=1/2Q), to the overall ground motion at soft soil sites across the city is not well understood. This research investigates attenuation measurements in soft soils (Vs<250 m/s) for ongoing seismic hazard evaluation in the Ottawa area. The work focuses on in situ measurements of damping in two deep boreholes drilled into Leda Clay. To investigate the possibility of frequency-dependent dynamic properties of these materials at low strains, a new approach to the spectral ratio technique has been developed for the measurement of Qs in the field using a mono-frequency vibratory source (generating signals between 10 and 100 Hz), and two identical downhole 3-component geophones. Monofrequency signals also allowed for the measurement of dispersion (variation of velocity with frequency). Analysis of the data show that dynamic properties are, for the most part, independent of frequency in the homogenous silty soils, yielding negligible variation in shear wave velocity (<2 m/s) across the frequency test band, and small strain Qs's ranging from 170 to 200 (damping of 0.25–0.30%) over soil thickness intervals ranging from 10 to 60 m. At intervals within 20 m of the ground surface, laminated silt and clay beds of elevated porosity are found to have slight influence on the frequency dependence of damping for frequencies greater than 70 Hz (damping increase to 0.6%).  相似文献   

6.
7.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

8.
The fundamental mode Love and Rayleigh waves generated by ten earthquakes and recorded across the Tibet Plateau, at QUE, LAH, NDI, NIL, KBL, SHL, CHG, SNG and HKG are analysed. Love- and Rayleigh-wave attenuation coefficients are obtained at time periods of 5–120 s using the spectral amplitudes of these waves for 23 different paths. Love wave attenuation coefficient varies from 0.0021 km?1, at a period of 10 s, to 0.0002 km?1 at a period of 90 s, attaining two maxima at time periods of 10 and 115 s, and two minima at time periods of 25 and 90 s. The Rayleigh-wave attenuation coefficient also shows a similar trend. The very low value for the dissipation factor, Qβ, obtained in this study suggests high dissipation across the Tibetan paths. Backus-Gilbert inversion theory is applied to these surface wave attenuation data to obtain average Qβ?1 models for the crust and uppermost mantle beneath the Tibetan Plateau. Independent inversion of Love- and Rayleigh-wave attenuation data shows very high attenuation at a depth of ~50–120 km (Qβ ? 10). The simultaneous inversion of the Love and Rayleigh wave data yields a model which includes alternating regions of high and low Qβ?1 values. This model also shows a zone of high attenuating material at a depth of ~40–120 km. The very high inferred attenuation at a depth of ~40–120 km supports the hypothesis that the Tibetan Plateau was formed by horizontal compression, and that thickening occurred after the collision of the Indian and Eurasian plates.  相似文献   

9.
Ground penetrating radar (GPR) is a time-dependent geophysical technique for measuring the thickness of second lining, which is one of the most important tunnel quality targets. As the wave transmits from air (or the second lining) to the second lining (or the first lining), the Fresnel reflective coefficient is negative, i.e., the phase of reflective wave is reverse to the incident. In the one dimension time-waveform diagram (A-Scan) of GPR, the lining layers are located on the inflexions which are decided by Fresnel reflection coefficients and the attenuation coefficients of electromagnetic wave in the transmission medium. By towing the antenna over the tunnel surface, two dimension scanning data (B-Scan) is constituted by multiple A-Scan channels, where the grey scale is applied to the amplitude values. In the process of exploration, the lining interfaces are separately plotted by connecting each maximum peak point or second maximum peak point of A-Scan. In the Long Hai Tunnel, the artificial recognition provides 15 sampling values on the exploration line from D9 + 015.195 to D9 + 065.195. However, the automatic recognition can provide more information, such as average thicknesses, standard errors of lining thickness and the qualification rates of lining thickness, etc.  相似文献   

10.
《Continental Shelf Research》1999,19(15-16):1905-1932
The M2 tidal component of the flow in the Dover Straits is reconstructed using a natural combination of two independent data sources: HF Ocean Surface Current Radar (HF OSCR) system and coastal tidal measurements. The method used is the variational data assimilation technique into a quasi-linearized finite element tidal model. The model uses triangular elements with horizontal resolution varying from 800 to 1200 m. It is controlled by the boundary conditions at open boundaries, which are adjusted to fit the available data in an optimal way. A “weak” formulation of the dynamical constraints is used. The interpolation scheme allows small (0.01%) deviations from the exact dynamics specified by the model. The optimal state of M2 parameters (sea surface elevation and depth-averaged velocities) is used to map both the M2 tidal flux through the strait and the M2 energy flux. The respective values obtained are the tidal flux amplitude 1.18±0.09×106 m3 s−1, the net residual transport (Stoke's drift) 40±3×103 m3 s−1, and the net energy flux 1.19±0.09×1010 W. These figures within the statistically estimated error band are in the close agreement with those obtained by Prandle et al., 1993. A rigorous error analysis is performed using an explicit inversion of the Hessian matrix, associated with the assimilation scheme. As a result, error charts for M2 velocities and sea surface elevation are obtained. It is shown that OSCR data combined with coastal level measurements and constrained by dynamics is able to provide quite accurate velocity estimates whose errors vary within the range of 0.05–0.45 m s−1 depending upon the location. Error maps also enable us to determine areas requiring better coverage by data, thus forming a basis of optimization approach to the design of the HFR measurements. The use of variational assimilation technique in providing integrated interpolation patterns from various sources of data demonstrates its capabilities in relation to future oceanographic monitoring systems of shelf circulation.  相似文献   

11.
This paper focuses on using high-frequency GAP-SENSORs (GSs), accelerometers, and load cells in a laminar shear box (LSB) filled with loose Toyoura sand to understand the effects of impact loads and cyclic shaking at 1-G on soil properties. The shear wave velocity at small strain (Vs) was calculated directly from first arrival reference using displacement time-history of two GSs under impact loading. Moreover, from first peak using the reduced deformation amplitude technique, damping ratio was calculated. In addition, shaking table tests were performed under harmonic loading with amplitude of acceleration inside the model ground varying from 0.02 g to 1 g. The frequencies of excitation varied from 1 Hz to 10 Hz. GSs and inside accelerometers were used to directly measure the outside lateral deformation and shear stress at different elevations of LSB, respectively. Results show that the shear modulus (G) and the damping ratio (D) behavior of model sand are generally consistent with the behavior presented by similar tests using only accelerometers. In addition, damping ratio increases as frequency loading increases. Characteristic changes in two shear stress components in shaking loading conditions were also investigated using high precision inside load cells.  相似文献   

12.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

13.
At longer periods, scattered ScS waves sometimes dominate over coda waves at large lapse times. Examining recordings of seismic envelopes at 9 IRIS seismic stations of regional earthquakes with focal depths deeper than 150 km in periods from 1 to 20 s for a wide lapse time range up to 2000 s, we found significant frequency dependence. The coda decay gradient at short periods is steeper than that at longer periods; however, the change of coda gradient associated with the ScS arrival becomes distinct as the period becomes longer. In particular, a clear offset of coda amplitude appears in central Asia for 10 and 15 s period bands. The multiple isotropic scattering process of S-waves in the heterogeneous mantle can be simply simulated by using the Monte Carlo simulation method based on the radiative transfer theory in scattering media. Assuming a two-plane-layer attenuation structure and smoothed velocity model of the PREM, we estimated the average total scattering coefficients of S-waves such as 7.52 × 10 4∼1.32 × 10 3 km 1 and 2.08 × 10 4∼6.23 × 10 4 km 1 at 4 s, and 4.51 × 10 4∼7.37 × 10 4 km 1 and 2.80 × 10 5∼2.71 × 10 4 km 1 at 10 s, for the lithosphere and the upper mantle and for the lower mantle, respectively. Our results indicate that scattering occurs mostly in the lithosphere and the upper mantle and support that medium heterogeneity spreads over the whole mantle though its scattering power is small. Strong scattering occurs beneath central Asia and Papua New Guinea, whereas the scattering beneath Italy and regions of east Russia is much weaker. The numerical calculation enables us to confirm that much stronger scattering than intrinsic attenuation causes the offset behavior with coda decay gradient change after the ScS arrival for 4 and 10 s period bands in some regions.  相似文献   

14.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

15.
Two accurately calibrated superconducting gravimeters (SGs) provide high quality tidal gravity records in three central European stations: C025 in Vienna and at Conrad observatory (A) and OSG050 in Pecný (CZ). To correct the tidal gravity factors from ocean loading effects we compared the load vectors from different ocean tides models (OTMs) computed with different software: OLFG/OLMP by the Free Ocean Tides Loading Provider (FLP), ICET and NLOADF. Even with the recent OTMs the mass conservation is critical but the methods used to correct the mass imbalance agree within 0.1 nm/s2. Although the different software agrees, FLP probably provides more accurate computations as this software has been optimised. For our final computation we used the mean load vector computed by FLP for 8 OTMs (CSR4, NAO99, GOT00, TPX07, FES04, DTU10, EOT11a and HAMTIDE). The corrected tidal factors of the 3 stations agree better than 0.04% in amplitude and 0.02° in phase. Considering the weighted mean of the three stations we get for O1 δc = 1.1535 ± 0.0001, for K1 δc = 1.1352 ± 0.0003 and for M2 δc = 1.1621 ± 0.0003. These values confirm previous ones obtained with 16 European stations. The theoretical body tides model DDW99/NH provides the best agreement for M2 (1.1620) and MATH01/NH for O1 (1.1540) and K1 (1.1350). The largest discrepancy is for O1 (0.05%). The corrected phase αc does not differ significantly from zero except for K1 and S2. The calibrations of the two SG's are consistent within 0.025% and agree with Strasbourg results within 0.05%.  相似文献   

16.
We present a catalog of moment tensor (MT) solutions and moment magnitudes, Mw, for 119 shallow (h  40 km) earthquakes in Greece and its surrounding lands (34°N–42°N, 19°E–30°E) for the years 2006 and 2007, computed with the 1D Time-Domain Moment Tensor inversion method (TDMT_INV code of Dreger, 2003). Magnitudes range from 3.2  Mw  5.7. Green's functions (GF) have been pre-computed to build a library, for a number of velocity profiles applicable to the broader Aegean Sea region, to be used in the inversion of observed broad band waveforms (10–50 s). All MT solutions are the outcome of a long series of tests of different reported source locations and hypocenter depths. Quality factors have been assigned to each MT solution based on the number of stations used in the inversion and the goodness of fit between observed and synthetic waveforms. In general, the focal mechanisms are compatible with previous knowledge on the seismotectonics of the Aegean area. The new data provide evidence for strike-slip faulting along NW–SE trending structures at the lower part of Axios basin, close to the heavily industrialized, and presently subsiding, region of the city of Thessaloniki. Normal faulting along E–W trending planes is observed at the Strimon basin, and in Orfanou Gulf in northern Greece. A sequence of events in the east Aegean Sea close to the coastline with western Anatolia sheds light on an active structure bounding the north coastline of Psara–Chios Islands about 20–25 km in length exhibiting right lateral strike-slip faulting.  相似文献   

17.
Modeling of multimode surface wave group velocity dispersion data sampling the eastern and the western Ganga basins, reveals a three layer crust with an average Vs of 3.7 km s?1, draped by ~2.5 km foreland sediments. The Moho is at a depth of 43 ± 2 km and 41 ± 2 km beneath the eastern and the western Ganga basins respectively. Crustal Vp/Vs shows a felsic upper and middle crust beneath the eastern Ganga basin (1.70) compared to a more mafic western Ganga basin crust (1.77). Due to higher radiogenic heat production in felsic than mafic rocks, a lateral thermal heterogeneity will be present in the foreland basin crust. This heterogeneity had been previously observed in the north Indian Shield immediately south of the foreland basin and must also continue northward below the Himalaya. The high heat producing felsic crust, underthrust below the Himalayas could be an important cause for melting of midcrustal rocks and emplacement of leucogranites. This is a plausible explanation for abundance of leucogranites in the east-central Himalaya compared to the west. The uppermost mantle Vs is also significantly lower beneath the eastern Ganga basin (4.30 km s?1) compared to the west (4.44 km s?1).  相似文献   

18.
Using data from two very large watersheds and five smaller, this paper explores the use of Bayesian methods for fitting rating curves. Posterior distribution of rating-curve parameters were calculated using Markov Chain Monte Carlo (MCMC) methods, and 95% credible intervals were calculated for predicted discharges, given stage. Expected discharge was related to stage using a link function. For the five smaller watersheds, the assumptions were (a) that the distribution of discharge Q, given stage h, is Normal, with variance proportional to h; (b) that a log link function relates μQ, the mean of Qh, to a function of stage, of the form μQ = β(h + α)λ. For the two large watersheds, however, a better fit was obtained by taking the distribution of Q to be log-Normal, and the link function as ln μQ = β0 + β1h. For the two large watersheds, priors for all three parameters were taken as uninformative; for the five smaller, the prior for parameter λ was taken as Normally distributed, N(2, 0.5). Acceptable ratings were obtained for all seven sites. It is argued that distributions of derived variables (such as annual maximum discharge) can be derived directly from (a) the posterior distribution of rating-curve parameters, and (b) the stage record, without recourse to additional assumptions. Estimates thus obtained for the T-year event will incorporate rating-curve uncertainty. It is argued that Bayesian methods are appropriate for rating-curve calculation because their inherent flexibility (a) allows the incorporation of prior information about the nature of a rating curve; (b) yields credible intervals for predicted discharges and quantities derived from them; (c) can be extended to allow for uncertainty in stage measurements.  相似文献   

19.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

20.
Array measurements of microtremors were carried out at thirty sites in Damascus city, Syria to estimate S-wave velocity structures of shallow soil formations for site effect analysis. The microtremor data were recorded by 6 vertical-component seismometers distributed along the circumferences of two circles as well as a 3-component seismometer deployed in the center. The phase velocities were estimated at each site from the vertical components of recorded microtremor data by using the Spatial Autocorrelation method. Then, Genetic Simulated Annealing Algorithm technique was applied for inversion of the phase velocities to estimate 1-D S-wave velocity structures beneath the sites. The inverted Vs profiles are not uniform in Damascus city and the results show that a shallow soft layer (∼200 m/s) appears in the eastern part of the city as well as the central part along Barada River. This layer controls the amplification distribution in the city with a high amplification mainly observed at the locations having this layer. The inversion results also show that the depth to the engineering bedrock (∼750 m/s) is very shallow along the foothills of Mt. Qasyoun in the north-west. Then the depth increases towards the east and the south. The maximum depth to the engineering bedrock (∼80 m) was observed in the southern part of Damascus. To validate the results of the inversions, the spectral ratios between the horizontal and vertical components (H/V) of the recorded microtremor data at the central seismometer were compared with the computed ellipticities of the fundamental-mode Rayleigh-waves based on the respective Vs structure. The results show a good agreement in a period range of 0.05 s to 0.5 s. In this period range, the dominant peaks of the H/V ratios are due to the overall effect of the velocity contrasts between the shallow layers representing the subsurface S-wave velocity structure. Moreover, the average S-wave velocity for the top 10 m of soils (VS10) shows a better correlation with the averaged site amplification in a period range of 0.05 s to 0.5 s than VS30 which indicates that VS10 can be a better proxy for high-frequency site amplification in the case of Damascus city.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号