共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractured archaeological glass blocks altered 1800 years in seawater are investigated because of their morphological analogy with vitrified nuclear waste. They provide an opportunity for understanding glass alteration in variable confined media (cracks), by studying an actual ancient system in a known stable natural environment. Characterization of the crack network from two-dimensional trace maps (length, alteration thickness, orientation) allows us to determine the three-dimensional geometric parameters (crack density, fracture ratio) and the percentage of alteration, using stereological relations. This methodology could be applied to nuclear glass. From a representative archaeological glass block, we showed that the surface developed by the cracks is 86 ± 27 times greater than the geometric surface but the volumetric alteration is 12.2 ± 4.1%, which is only 12 times greater than the volumetric alteration of the block periphery (about 1 vol%). This unexpected low value is explained by the large variation of the alteration thicknesses in the different types of cracks in relation with their location in the block. The alteration thickness is usually smaller in the internal zone than in the border zone. The alteration layers resulted from three main mechanisms (interdiffusion, glass dissolution, and secondary phase precipitation) leading to two different alteration products (a sodium-depleted layer and mainly a Mg-smectite). Geometric parameters such as the glass surface area/solution volume ratio and transport parameters (renewal of the alteration solution) strongly affected the glass dissolution kinetics. The confined conditions and the diffusive transport of reactive species favor low alteration kinetics. The precipitation of secondary phases also results in sealing of the cracks. Consequently, although it is not known if subcritical crack growth occurred, internal cracks account for only a minor contribution to the overall alteration. These results improve our understanding of alteration in cracks for assessing the predominant physical and chemical parameters that must be considered in long-term nuclear glass modeling. 相似文献
2.
3.
4.
In this study, we have investigated and clarified the processes occurring during the alteration of SON68 glass – the reference nuclear glass for the waste arising from reprocessing of spent fuel from light water reactors – at 50 °C in Callovo-Oxfordian clay groundwater in presence of magnetite. Magnetite is known to be one of the iron corrosion products expected to be present in the vicinity of glass in geological disposal conditions. The effects of the amount of magnetite relative to the glass surface and the transport of aqueous species during glass alteration were studied. A first series of experiments was focused on the effect of various magnetite amounts by mixing and altering glass and magnetite powders. In a second series of experiments, magnetite was separated from the glass by a diffusive barrier in order to slow down the transport of aqueous species. Glass alteration kinetics were analyzed and solids were characterized by a multiscale approach using Raman Spectroscopy, Scanning and Transmission Electron Microscopy, Energy-Dispersive X-ray and Scanning Transmission X-ray Microscopy coupled with Fe L2,3-edge and C K-edge NEXAFS.It appears that glass alteration increases with the amount of magnetite and that the transport of aqueous species is a key parameter. Several processes have been identified such as (i) the silica sorption on the magnetite surface, (ii) the precipitation of Fe-silicates in the vicinity of the glass (iii) the precipitation of SiO2 on the magnetite surface, (iv) the incorporation of Fe within the alteration layer. Process (iv) was not frequently observed, suggesting local variations in geochemical conditions. Moreover, this process is strongly influenced by the transport of aqueous species as indicated by the morphology and composition of the alteration layers. Indeed, when glass and magnetite are homogeneously mixed, the glass alteration layer consists of a gel enriched in Fe having the same Fe(II)/Fe(III) ratio as in magnetite. When both materials are separated by a diffusive barrier, the glass alteration layer consists of a porous gel (not enriched in iron) in presence of a mixture of Fe-silicates with Fe having the same valence as in magnetite, rare-earth precipitates and phyllosilicates. These results suggest that Fe incorporation within the alteration layer changes depending on the distance and the time required for dissolved Fe originating from the magnetite to reach the glass. 相似文献
5.
《Applied Geochemistry》1999,14(5):635-653
Fully radioactive and non-radioactive Savannah River Laboratory (SRL) borosilicate glasses were reacted with water under static conditions at glass surface area to leachant volume (S/V) ratios of 340 m−1, 2000 m−1, and 20 000 m−1 for times varying from several days to several years at 90°C. A radioactive SRL 200 glass was also reacted under intermittent flow conditions at 90°C. Colloidal and suspended glass alteration particles present in the leachates of these tests were examined with analytical transmission electron microscopy (AEM). The major colloidal phase identified in all tests was partially crystalline dioctahedral smectite clay. At 20 000 m−1, the clay colloids flocculate and sediment, becoming attached to available surfaces when the ionic strength reached a value of about 0.3–0.5 mol·kg−1. Clay colloids remained stable in the solution for the duration of the experiment in tests conducted at S/V values of 2000 m−1 and 340 m−1. Calcite, dolomite, and transition metal oxide particles were more common in the intermittent flow tests but were also found in the static tests. Layered, Mn-bearing minerals, birnessite and asbolane, were found exclusively in the intermittent flow tests. Weeksite and a U-Ti phase were found exclusively in the static tests. Partially crystalline rare earth-bearing calcium phosphate colloids, structurally related to rhabdophane, were found in both types of tests. These particles exhibited a negative Ce anomaly. The affinity of phosphate for Pu was investigated through geochemical modeling. The results from this study and others were used to form a picture of colloidal development in the leachate from waste glass testing. 相似文献
6.
Frédéric Angeli Marina Gaillard Thibault Charpentier 《Geochimica et cosmochimica acta》2006,70(10):2577-2590
A multinuclear solid-state NMR investigation of the structure of the amorphous alteration products (so called gels) that form during the aqueous alteration of silicate glasses is reported. The studied glass compositions are of increasing complexity, with addition of aluminum, calcium, and zirconium to a sodium borosilicate glass. Two series of gels were obtained, in acidic and in basic solutions, and were analyzed using 1H, 29Si, and 27Al MAS NMR spectroscopy. Advanced NMR techniques have been employed such as 1H-29Si and 1H-27Al cross-polarization (CP) MAS NMR, 1H double quantum (DQ) MAS NMR and 27Al multiple quantum (MQ) MAS NMR. Under acidic conditions, 29Si CP MAS NMR data show that the repolymerized silicate networks have similar configuration. Zirconium as a second nearest neighbor increases the 29Si isotropic chemical shift. The gel porosity is influenced by the pristine glass composition, modifying the silicon-proton interactions. From 1H DQ and 1H-29Si CP MAS NMR experiments, it was possible to discriminate between silanol groups (isolated or not) and physisorbed molecular water near Si (Q2), Si (Q3), and Si (Q4) sites, as well as to gain insight into the hydrogen-bonding interaction and the mobility of the proton species. These experiments were also carried out on heated samples (180 °C) to evidence hydrogen bonds between hydroxyl groups on molecular water. Alteration in basic media resulted in a gel structure that is more dependent on the initial glass composition. 27Al MQMAS NMR data revealed an exchange of charge compensating cations of the [AlO4]− groups during glass alteration. 1H-27Al CP MAS NMR data provide information about the proximities of these two nuclei and two aluminum environments have been distinguished. The availability of these new structural data should provide a better understanding of the impact of glass composition on the gel structure depending on the nature of the alteration solution. 相似文献
7.
8.
We propose a decision-making approach for optimizing the profitability of hydrocarbon reservoirs. The proposed approach addresses
the overwhelming complexity of the overall optimization problem by suggesting an oilfield operations hierarchy that entails
different time scales. We discuss system identification, optimization, and control that are appropriate at various levels
of the hierarchy and capitalize on the abilities of permanently instrumented and remotely actuated fields. Optimization is
performed in real-time and is based on feedback. We provide details on real-time identification of hybrid models and their
use at the scheduling and supervisory control levels. Case studies using field-calibrated simulation data demonstrate the
applicability and value of the proposed approach. Directions for future development are given. 相似文献
9.
Catherine L. Jones 《Geochimica et cosmochimica acta》2006,70(4):1040-1058
We have performed an experimental study of the aqueous alteration of the Allende CV3 carbonaceous chondrite under highly oxidizing conditions, in order to examine the alteration behavior of Allende’s anhydrous mineralogy. The experiments were carried out at temperatures of 100, 150, and 200 °C, for time periods between 7 and 180 days, with water/rock ratios ranging from 1:1 to 9:1. Uncrushed cubes of Allende were used so that the spatial relationships between reactant and product phases could be examined in detail. Scanning electron microscope studies show that in all the experiments, even those of short duration (7 days), soluble salts of Ca and Mg (CaSO4, CaCO3, and MgSO4) precipitated on the sample surface, indicating that these elements are rapidly mobilized during alteration. In addition, iron oxides and hydroxides formed on the sample surfaces. The sulfates, carbonates, and the majority of the iron-bearing secondary minerals are randomly distributed over the surface of samples. In some instances the iron oxides and hydroxides are constrained to the boundaries of altering mineral grains. Transmission electron microscope studies show that the FeO-rich olivine in the interior of the samples has altered to form interlayered serpentine/saponite and Fe-oxyhydroxides. The degree of alteration increases significantly with increasing water/rock ratio, and to a lesser extent with increasing duration of heating. The serpentine/saponite forms both by direct replacement of the olivine in crystallographically oriented intergrowths, and by recrystallization of an amorphous Si-rich phase that precipitates in pore space between the olivine grains. The alteration assemblage bears many similarities to those found in altered carbonaceous chondrites, although in detail there are important differences, which we attribute to (a) the relatively high temperatures of our experiments and (b) comparatively short reaction times compared with the natural examples. In terms of mineral assemblage, our experiments most closely resemble alteration in the CI chondrites, although the degree of alteration of our experiments is much lower. CI chondrites contain serpentine/saponite intergrowths and veins of Ca-sulfate and Ca-carbonate as well as the Fe-oxyhydroxide, ferrihydrite. However, the phyllosilicate phases formed in our experiments are somewhat coarser-grained than the finest phyllosilicate fraction present in CI chondrites, suggesting that alteration of the CI chondrites occurred at lower temperatures. In terms of mineral assemblage, our experiments also appear to come close to matching CR chondrites, although we infer that CR alteration probably occurred at temperatures <100 °C, based on the very fine-grained size of phyllosilicates in CR matrices. 相似文献
10.
赣东北景德镇四村矿化蚀变带成矿地质条件及找矿潜力 总被引:1,自引:0,他引:1
四村矿化蚀变带是在塔前—赋春矿集区新发现的1处铜多金属矿化蚀变带, 通过与朱溪钨铜多金属矿床进行地质、矿化蚀变、地球物理-地球化学-遥感异常等对比, 认为二者的成矿地质条件相似.根据四村地区浅表闪长玢岩、煌斑岩和辉长辉绿岩脉地质特征, 推测其深部可能存在花岗质岩体.结合晚古生代碳酸盐岩、断裂破碎带和层间破碎带地质特征, 推测花岗质岩浆上侵并与碳酸盐岩接触交代, 可形成矽卡岩型矿床或热液脉型矿床, 具有较好的找矿潜力.下一步找矿重点为侵入岩与碳酸盐岩接触带、断裂带和层间破碎带. 相似文献
11.
The particulate nature of granular soils can be accurately simulated at a microscale level. However, due to the huge spatial extent of geotechnical systems, a model fully constructed at such a scale is almost impossible with current computing technologies. Hence, continuum-based approaches are considered as the practical scale for modeling the majority of problems. Combining both scales enables benefiting from the advantages of both techniques while trying to overcome their drawbacks. Although a significant number of publications have addressed coupling both scales, only a few provide information regarding implementing the proposed procedures. In this study, an efficient co-simulation framework for conducting multiscale analysis is introduced. The framework is based on integrating existing continuum and micromechanical modeling software packages and therefore benefitting from already existing codes. A computational simulation of a rigid pile in contact with granular soil demonstrating the capabilities of such technique is presented. The near-field zone surrounding the pile is modeled using DEM whereas FEM is utilized to model far-field zones that are not affected by the presence of the pile. Results of conducted simulations resemble those obtained from experimental results. The proposed approach appears to be a very effective and promising tool to model boundary value problems of geotechnical systems. 相似文献
12.
The interaction of groundwater with cement in a geological disposal facility (GDF) for intermediate level radioactive waste will produce a high pH leachate plume. Such a plume may alter the physical and chemical properties of the GDF host rock. However, the geochemical and mineralogical processes which may occur in such systems over timescales relevant for geological disposal remain unclear. This study has extended the timescale for laboratory experiments and shown that, after 15 years two distinct phases of reaction may occur during alteration of a dolomite-rich rock at high pH. In these experiments the dissolution of primary silicate minerals and the formation of secondary calcium silicate hydrate (C–S–H) phases containing varying amounts of aluminium and potassium (C–(A)–(K)–S–H) during the early stages of reaction (up to 15 months) have been superseded as the systems have evolved. After 15 years significant dedolomitisation (MgCa(CO3)2 + 2OH− → Mg(OH)2 + CaCO3 + CO32−(aq)) has led to the formation of magnesium silicates, such as saponite and talc, containing variable amounts of aluminium and potassium (Mg–(Al)–(K)–silicates), and calcite at the expense of the early-formed C–(A)–(K)–S–H phases. This occured in high pH solutions representative of two different periods of cement leachate evolution with little difference in the alteration processes in either a KOH and NaOH or a Ca(OH)2 dominated solution but a greater extent of alteration in the higher pH KOH/NaOH leachate. The high pH alteration of the rock over 15 years also increased the rock’s sorption capacity for U(VI). The results of this study provide a detailed insight into the longer term reactions occurring during the interaction of cement leachate and dolomite-rich rock in the geosphere. These processes have the potential to impact on radionuclide transport from a geodisposal facility and are therefore important in underpinning any safety case for geological disposal. 相似文献
13.
Patricia Acero Luis F. Auqué María J. Gimeno Javier B. Gómez 《Environmental Earth Sciences》2010,59(8):1613-1628
In this study, the potential for mineral precipitation reactions to occur during the excavation, disposal, backfilling and
closure of a deep geological repository for the final disposal of spent nuclear fuel was evaluated with the assistance of
hydrogeochemical modelling. Four modelling exercises, corresponding to the main expectable geochemical scenarios in the Excavation
Damaged Zone (EDZ) throughout repository evolution, were carried out and the times for sealing of the discontinuities owing
to mineral precipitation in each of them were evaluated and discussed. The simulations show that mineral precipitation reactions
are thermodynamically feasible in most of the studied cases. The main mineral phases potentially responsible for the hydraulic
sealing of the EDZ are calcite and ferric oxyhydroxides, being the estimated volumes occupied by the precipitation of calcite
between one and three orders of magnitude larger than the volume of precipitating ferric phases. The estimated times for complete
sealing of the EDZ may vary between several hundreds to more than 1 million years. The shortest sealing times (less than 3,000 years)
are obtained for the mixture of groundwaters from the repository depth with dilute infiltration waters. 相似文献
14.
15.
Prussian Blue, FeIII
4[FeII(CN)6]3, and structurally related transition metal compounds are used as cesium ion exchangers in decontamination procedures of liquid radioactive waste. The used ion exchangers are conditioned as a cementitious waste form for interim storage and finally will become part of the radioactive waste in geological repositories. The problem discussed here is the long-term behaviour of the ion exchangers FeIII
4[FeII(CN)6]3 and Ni2[Fe(CN)6] in planned geological repositories. The worst-case scenario is the instantaneous and complete dissolution and decomposition of the ion exchangers in the cementitious environment and the release of free cyanide. All radionuclides belonging to the class of hard acceptors, e. g. Cs, Sr, Ra, U, Np, Pu, Am and Cm, are not affected by cyanide complexation under these conditions. Radionuclides belonging to the class of soft acceptors and borderline metals, e.g. Co, Ni, Tc, Cd, Pb, Pd and Ag, are affected to various degrees by cyanide complexation. Strong complexation and extensive cyanide leaching is found for Ni, Co, Pd, Ag. 相似文献
16.
《Applied Geochemistry》2000,15(2):141-155
A marine based argillaceous rock containing volcanic glass shards has been investigated to infer the long-term durability of vitrified nuclear waste in compacted bentonite, which is a candidate for buffer material constituting the engineered barrier system for nuclear waste disposal. Fission track ages indicate that the volcanic glass shards, andesitic scoria, have been buried in the argillaceous rock for about 1 Ma. Neither glass matrix dissolution nor precipitation on the surface was seen under an optical microscope. Little leaching of any element has been recognized by analyses using an electron microprobe analyzer. Secondary ion mass spectrometry analysis, however, indicates significant hydration which may dominantly be a permeation of molecular water.As an indicator of durability of glass against groundwater a normalized mass loss of Si (NLSi) has been evaluated for the volcanic glass based on free energy for hydration. The difference between estimated NLSi of the volcanic glass and that of a simulated waste glass is within one order so that the volcanic glass may be analogous to a waste glass with respect to durability to water. The argillaceous rock is analogous to the compacted bentonite with respect to physical properties such as dry-density, unconfined compression strength, porosity, and hydraulic conductivity. The ambient physical and chemical conditions surrounding the volcanic glass have been also investigated: temperature was in the range from 4 to 30°C due to the burial history of the volcanic glass. Over most of the past 1 Ma the volcanic glass has been in contact with groundwater originating from seawater. Thermodynamic calculations indicate (1) pH (=7.74–7.94) of the groundwater has mainly been controlled by dissolution of carbonate minerals, (2) the redox potential (Eh=−34–−73 mV) of the groundwater has dominantly been controlled by decomposition of organic materials to produce CH4(g), and (3) activity of aqueous silica of the groundwater was in equilibrium with SiO2 amorphous. Because of the equilibrium between aqueous silica and SiO2 amorphous, the volcanic glass did not dissolve during the burial.Vitrified nuclear waste sealed in compacted bentonite, therefore, will not dissolve significantly if buried in an environment as mentioned above. 相似文献
17.
This investigation was carried out to assess the protective properties of the alteration film that develops during aqueous alteration of the French SON 68 (R7T7-type) nuclear glass, notably by examining the behavior of some network-forming cations in the presence of complexing anions. Glass alteration was studied here in the presence of orthophosphate ions. Comparisons were established between two series of tests performed with a solution containing orthophosphate ions and control tests performed under the same conditions but without phosphates. The first series of experiments was performed under initial rate conditions (i.e. in dilute media) to assess the effect of pH and phosphate concentration on the initial glass dissolution rate. Under these conditions, which ensure maximum chemical affinity of the glass dissolution reaction, phosphate adsorption occurs at the reaction interface only with acid pH values, at which the glass dissolution reaction is strongly inhibited. The elements that form complexes with the phosphates (Al, Fe, etc.) partially control glass dissolution in acidic media. Additional experiments carried out under saturated conditions — notably with respect to Si — in a solution enriched with phosphates showed that rare earth and Ca phosphates precipitated in the outer region of the alteration film, maintaining a glass dissolution rate significantly higher than in the control experiment. These observations have several implications. (1) Comparing the results obtained in the presence of phosphates and in the reference medium, the authors demonstrate deductively that glass dissolution is limited by the inner portion of the alteration film, i.e. the amorphous gel. (2) A kinetic law of SON 68 glass dissolution cannot be based on silica alone; the results of these experiments contradict Grambow’s model. (3) With regard to control of the glass dissolution kinetics by the protective properties of the gel, this type of experiment shows that the relation between the chemical composition and the microstructure of the gel is an important aspect in modeling the glass alteration kinetics, but that it is still poorly understood. 相似文献
18.
RUSSELL J. WHITE GLENN A. SPINELLI PETER S. MOZLEY NELIA W. DUNBAR 《Sedimentology》2011,58(5):1138-1154
A minor amount (ca 1 wt%) of amorphous silica cement sourced from volcanic glass inhibits consolidation of hemipelagic sediment approaching the Nankai Trough subduction zone throughout the Shikoku Basin. The distribution and nature of the cement were examined via secondary and backscattered electron imaging. The amorphous silica occurs as altered material in contact with volcanic glass, coating grains (including grain contacts) and filling pores. Based on chemical and petrographic evidence, the cement is probably sourced from volcanic glass; this is in contrast to a previous suggestion that this silica cement is sourced dominantly from biogenic silica. Amorphous silica sourced from disseminated volcanic glass shards has the ability to form a thin coating on clay‐dominated sediment throughout the Shikoku Basin. Measured amorphous silica content in hemipelagic sediments suggests that the cementing process is active throughout the Shikoku Basin (at sites separated by >500 km). The cementation process may occur in other locations where sediment containing hydrated disseminated volcanic glass is buried sufficiently for heat to facilitate alteration (i.e. Central America, Cascadia and the Gulf of Alaska). 相似文献
19.
Werner F. Giggenbach 《Geochimica et cosmochimica acta》1984,48(12):2693-2711
At very low fluid/rock mass ratios the hydrothermal alteration process corresponds to isochemical recrystallisation of the primary rock. The resulting full equilibrium assemblage with the composition of an average crustal rock contains the phases albite, K-feldspar, K-mica, biotite, quartz and (depending on temperature) epidote, prehnite or one of the Ca-zeolites. Relative Na+, K+, Mg2+ and Ca2+—solution activities in such a rock-dominated alteration system are uniquely fixed and provide useful reference points with regard to the degree of attainment of full fluid/rock equilibrium. With increasing fluid/rock mass ratios the composition of now increasingly fluid-dominated alteration assemblages is determined by the interplay of three major processes: hydrogen metasomatism as a function of CO2 reactivity increasing with the horizontal distance from major fluid upflow zones and leading to the formation of Al-enriched alteration assemblages; potassium metasomatism accompanied by silicification in or close to major fluid upflow zones leading to potassic and phyllic alteration; sodium, magnesium, calcium metasomatism associated with descending and heating solutions leading to propylytic alteration of recharge zones. Two new parameters, reactivity and exchangeability, determining the effectiveness of fluid components with respect to hydrothermal alteration are introduced. 相似文献
20.
A new method is proposed for the development of a class of elastoplastic thermomicromechanical constitutive laws for granular
materials. The method engenders physical transparency in the constitutive formulation of multiscale phenomena from the particle
to bulk. We demonstrate this approach for dense, cohesionless granular media under quasi-static loading conditions. The resulting
constitutive law—expressed solely in terms of particle scale properties—is the first of its kind. Micromechanical relations
for the internal variables, tied to nonaffine deformation, and their evolution laws, are derived from a structural mechanical
analysis of a particular mesoscopic event: confined, elastoplastic buckling of a force chain. It is shown that the constitutive
law can reproduce the defining behavior of strain-softening under dilatation in both the mesoscopic and macroscopic scales,
and reliably predict the formation and evolution of shear bands. The thickness and angle of the shear band, the distribution
of particle rotation and the evolution of the normal contact force anisotropy inside the band, are consistent with those observed in discrete element simulations and physical experiments. 相似文献