首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

2.
Geophysical methods were applied for hydrogeological targets in many countries including Vietnam. This paper presents results of using complex geophysical techniques as well as 2D electrical resistivity imaging (ERI), vertical electrical sounding (VES), very low frequency (VLF), and seismic refraction for geological structure investigation for locating the aquifers and assessing the hydrogeological conditions for groundwater potential in industrial zones of North Hanoi, Vietnam. The locations of two aquifers are determined by their depth and thickness on the basis of resistivity and seismic velocity values which were proved by stratifications of three boreholes to 40–60 m of depth on the study area. There are connections from surface water to shallow aquifer by hydraulic windows, as follows from VLF data. The deeper aquifer can be considered as a potential groundwater supply, but the water level is descending in time, as shown by hydrological monitoring. However, with careful use and by reducing sources of pollution, groundwater can continue to be an important natural resource for future.  相似文献   

3.
To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.  相似文献   

4.
《水文科学杂志》2013,58(5):949-960
Abstract

A geographical information system (GIS) was used for the integration of hydrological data acquired using remote sensing and geoelectrical techniques to understand the groundwater condition of Bakhar watershed, Mirazpur District, UP, India. Indian remote sensing IRS-1D, LISS—III data were used to prepare a geomorphological and lineament map of the Bakhar watershed. Vertical electrical sounding (VES) was carried out in different geomorphic units, and ranges of electrical resistivity values were assigned to the different formations by calibrating electrical resistivity with borehole data. Based on these, a subsurface resistivity map and an aquifer thickness map were prepared. Several layers were superimposed using GIS techniques. Each theme was assigned a weight, depending on its influence on groundwater recharge. Each class or unit in the map was assigned a knowledge-based rank from one to four, depending on its significance in storage and transmittance of groundwater, and these were then multiplied by the layer weighting to produce a score. Based on these scores, the watershed was categorized into different groundwater potential zones. The results indicate that the eastern and northern parts of the study area have very good groundwater potential to meet the demands of water for irrigation and domestic purposes, whereas the southern region has poor groundwater potential zones. Such integrated analysis has not been attempted so far in this region for hydrogeological investigation.  相似文献   

5.
The importance of the study of fresh‐saline water incursion cannot be over‐emphasized. Borehole techniques have been widely used, but they are quite expensive, intrusive, and time consuming. The electrical resistivity method has proved very successful in groundwater assessment. This advanced technique uses the calculation of Dar‐Zarrouk (D‐Z) parameters, namely longitudinal unit conductance, transverse unit resistance, and longitudinal resistivity has been employed by using 50 vertical electrical sounding points to assess the groundwater and delineate the fresh‐saline water interface over 1045 km2 area of Khanewal in Southern Punjab of Pakistan. The x‐y plots and maps of D‐Z parameters were produced to establish a decipherable vision for the occurrence and distribution of different water‐bearing formations of fresh‐saline water aquifers through a complicated situation of intermixing of different resistivity ranges for fresh‐saline water bodies. This technique is useful to reduce the ambiguity produced by the process of equivalence and suppression which cause intermixing in differentiating fresh, brackish, and saline aquifers during interpretation. The fresh‐saline water interface is correlated very well with the previous studies of water quality analysis carried out in Khanewal area. The results suggest that the D‐Z parameters are useful for demarcating different aquifer zones. The behavior and pattern of D‐Z parameters with respect to occurrence and distribution of different water‐bearing formations were effectively identified and delineated in the study area.  相似文献   

6.
An area of about 30 km2 located in Ain Jouhra, south of Rabat, Morocco, was the subject of a geoelectric resistivity investigation. The main goal of the investigation was the assessment of the groundwater potential of the uppermost aquifer. The aquifer conditions such as depth, thickness and boundaries were also investigated. The obtained apparent resistivity curves were first analysed qualitatively and classified using simple curve shapes. Thereafter, the data were converted to resistivity and thickness pairs semi‐quantitatively by means of master curves and then quantitatively by computer modelling using ATO and Winsev software (Zohdy, 1989; Zohdy and Bisdrof, 1989). Lithological control from the available single well with a stratigraphic log aided in the correlation of the resistivity values to different rock units. Three different AB‐spacing iso‐resistivity maps, an isopach map of the main groundwater‐bearing horizon, the depth to the aquifer substratum map and five geoelectric cross‐sections were constructed. The interpretation of these soundings indicates the presence of an unconfined to semi‐confined sandy aquifer with relatively important extent and varying thickness. The maximal thickness of the aquifer is recorded in the central part of the investigated area and is thinning southwards to pinch out farther to the south. Geophysical as well as field data indicate a hydraulic connection between the upper and deeper aquifers. Indeed, the two aquifers are separated from each other by a marly substratum that is indicated throughout the area by the lowest values of the interpreted true resistivity. The value of this resistivity varies laterally, most likely due to the lateral variation in the shale‐to‐sand ratio. The altitude of the substratum decreases towards the north, and increases southwards. Regarding the availability of the groundwater in the study area, zones with high potential are theoretically expected to occur in the central part where the transversal resistance is greatest. However, sufficient water supply and high flow rates from wells intended to produce restrictively from the most upper aquifer are not likely to exist. This conclusion, which seems to be very pessimistic, is evidenced from two real field and experimental observations. The first is the rapid fall of the level of Gharnoug lake, despite the ongoing feeding by three wells. Hence, the amount of water level drop cannot be accounted for by the evaporation alone. That means that the deeper aquifer is continuously draining the upper aquifer at a high flow rate. Very low rates are recorded in all the wells that penetrated only the upper aquifer, the exception being the well that reached deeper into the lower aquifer. The flow rate in this lower aquifer measured 18 litre s?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The southern basin of Aqaba forms coastal aquifer and comprises an area of about 90 km2. Alluviums and Pleistocene deposits fill the basin bounded by Precambrian Granite Basement to the east and north. Hydrogeophysical investigations were carried out to investigate its groundwater potentials and characteristics. Direct modeling on Bouger and residual gravity revealed some local subsurface faults that form subbasins and sub-grabens in the body of the basin, each one of them is bounded by two to three faults. The spatial distribution of groundwater was found to be affected by the presence of the sub-basins and grabens. Geoelectrical layers have been vertically digitized and put in a four variable space-lattice, 2D slices of the different depths and 3D visualizations have been produced. The extents of seawater intrusion and zones of water qualities were delineated. The geoelectric inferred some local subsurface faults that were found in spatial correlation with those inferred from the gravity. A good combination was made between gravity and resistivity methods to confirm the 3D distribution of groundwater in the basin.  相似文献   

8.
An integrated study using geophysical method in combination with pumping tests and geochemical method was carried out to delineate groundwater potential zones in Mian Channu area of Pakistan. Vertical electrical soundings (VES) using Schlumberger configuration with maximum current electrode spacing (AB/2 = 200 m) were conducted at 50 stations and 10 pumping tests at borehole sites were performed in close proximity to 10 of the VES stations. The aim of this study is to establish a correlation between the hydraulic parameters obtained from geophysical method and pumping tests so that the aquifer potential can be estimated from the geoelectrical surface measurements where no pumping tests exist. The aquifer parameters, namely, transmissivity and hydraulic conductivity were estimated from Dar Zarrouyk parameters by interpreting the layer parameters such as true resistivities and thicknesses. Geoelectrical succession of five‐layer strata (i.e., topsoil, clay, clay sand, sand, and sand gravel) with sand as a dominant lithology was found in the study area. Physicochemical parameters interpreted by World Health Organization and Food and Agriculture Organization were well correlated with the aquifer parameters obtained by geoelectrical method and pumping tests. The aquifer potential zones identified by modeled resistivity, Dar Zarrouk parameters, pumped aquifer parameters, and physicochemical parameters reveal that sand and gravel sand with high values of transmissivity and hydraulic conductivity are highly promising water bearing layers in northwest of the study area. Strong correlation between estimated and pumped aquifer parameters suggest that, in case of sparse well data, geophysical technique is useful to estimate the hydraulic potential of the aquifer with varying lithology.  相似文献   

9.
A 3D model of collected time-domain induced polarization (IP) and electrical resistivity tomography (ERT) data is compiled by geostatistical methods as well as studying spatial correlation among the database. Mesgaran copper deposit, located in Birjand eastern Iran, was chosen to compile and verify the model, leading to five parallel surveyed IP and ERT profiles with dipole–dipole arrays. The collected data were inverted, and then 2D models of IP and ER were prepared; also 3D inversion was done. Afterward, the 3D model has been built by geostatistical methods. Correspondingly, the anomalies threshold was detected by fractal methods and the estimation variance and Kriging efficiency were calculated to validate the modeling. The mineralization zones were determined according to the classified anomalies and those with the lowest error. Results indicated a high correlation between anomalies identified from the model and mineralization. The results made it possible to construct 3D models from surveyed 2D data with acceptable error level.  相似文献   

10.
在青藏高原东北缘至鄂尔多斯地块沿玛沁—兰州—靖边剖面进行62个测点的大地电磁观测,采用Robust技术对观测数据进行了处理和张量阻抗分解.分析了视电阻率和阻抗相位曲线、二维偏离度、区域走向.采用RRI二维反演技术进行了资料的反演解释,二维剖面的电性结构显示:(1)玛沁断裂带、兰州深断裂带、马家滩—大水坑断裂带将剖面分为4个电性区块:巴颜喀拉地块、秦祁地块、边界带和鄂尔多斯地块.(2)区块1、2和4的地壳电性结构有类似特点:上地壳为高阻层,下地壳上部为低阻带,下地壳下部到上地幔电阻率随深度逐渐升高.区块3电性成层性差、结构复杂,是现今构造活动较强烈的地区.(3)玛沁断裂带、海原断裂带和罗山—云雾山断裂带为较陡立的超壳断裂带;西秦岭北缘断裂带为壳内断裂带.  相似文献   

11.
In the Llucmajor aquifer system (Majorca Island, Spain) some geothermal evidences have appeared. This phenomenon is not isolated to Majorca and it is present in other areas, where it can be associated with structural conditions, especially to the extensional event suffered by the island after the Alpine Orogeny. However, the origin of this anomaly in Llucmajor is not well known, and there is no surface geological evidence of these structural conditions. With the aim of delineating the geoelectrical structure of the zone and identifying the geological structure that allows the presence of this anomaly, an audiomagnetotelluric (AMT) survey was carried out. The AMT data was processed using a Wavelet Transform-based scheme. Dimensionality analysis indicates that the geoelectrical structure is mainly 3D. The 3D model was obtained by trial and error forward modeling, taking accounting of the responses from the determinant of the impedance tensor. The model shows a vertical resistivity distribution with three horizons associated with different units: on the top, a shallow high resistive media related to an unconfined shallow aquifer; in the middle, a conductive layer related to the aquitard, and below it, another resistive media related to the confined deeper aquifer. The intermediate horizon shows a sudden thinning beneath the thermal anomalous zone that can be identified as a weakness zone (fault or fracture) connecting both aquifers. An exploratory well was drilled after the AMT survey and reached almost 700 m in depth. This allowed correlating the resistivity distribution of the 3D model with data logging and lithology obtained from the well, showing a proper agreement between them.  相似文献   

12.
A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense.The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.  相似文献   

13.
Within the framework of the National Marine Geological and Geophysical Program, we re‐examined deep vertical electrical sounding (VES) data. The data, measured in 1968 by the General Directorate of Mineral Research and Exploration (MTA) of Turkey with the aim of exploring the deep resistivity structure of the Dikili–Bergama region, focus on the geothermal potential. The geoelectrical resistivity survey was conducted using a Schlumberger array with a maximum electrode half‐spacing of 4.5 km. The two‐dimensional (2D) inversion was utilized to interpret the VES data that were collected along 15‐ to 30‐km profiles. The 2D resistivity–depth cross‐sections obtained show very low resistivity values near the Dikili and Kaynarca hot springs. The 2D inversion results also indicate the presence of fault zones striking nearly N–S and E–W, and fault‐bounded graben‐horst structures that show promising potential for geothermal field resources. The 2D gravity model, which is in good agreement with the density variation of the region, supports the resistivity structure revealed by 2D inversion. The lithology information obtained from the borehole near Kaynarca also confirms the results of the resistivity interpretation and the density model.  相似文献   

14.
Since the 1990s a large number of sinkholes have appeared in the Dead Sea (DS) coastal area. Sinkhole development was triggered by the lowering of the DS level. In the literature the relationship between the sinkholes and the DS level is explained by intrusion of relatively fresh water into the aquifer thereby dramatically accelerating the salt dissolution with creation of subsurface caverns, which in turn cause sinkholes. The main goal of our project was detection and localization of relatively fresh groundwater. During our study we used the transient electromagnetic method (TEM) to measure the electrical resistivity of the subsurface. As a test site we selected Nahal Hever South which is typical for the DS coast. Our results show that resistivity of the shallow subsurface reflects its vertical and lateral structure, e.g., its main hydrogeological elements explain the inter-relations between geology, hydrogeology, and sinkholes. The TEM method has allowed detailed differentiation of layers (clay, salt, etc.) in the subsurface based on their bulk resistivity. The 10 m-thick salt layer composed of idiomorphic crystals of halite deposited during the earlier Holocene period was extrapolated from borehole HS-2 through the study area. It was found that in Nahal Hever the typical value of the bulk resistivity of clay saturated with the DS brine varies between 0.2 and 0.3 Ωm, whereas saturated gravel and sandy sediments are characterized by resistivity between 0.4 and 0.6 Ωm. The high water salinity of the aquifer (enveloping the salt layer) expressed in terms of resistivity is also an important characterization of the sinkhole development mechanism. The electrical resistivity of the aquifer in the vicinity of the salt unit and its western border did not exceed 1 Ωm (in most cases aquifer resistivity was 0.2-0.6 Ωm) proving that, in accordance with existing criteria, the pores of the alluvial sediments are filled with highly mineralized DS brine. However, we suggest that the criterion of the aquifer resistivity responsible for the salt dissolution should be decreased from 1 Ωm to 0.6 Ωm corresponding to the chloride concentration of approximately 100 g/l (the chloride saturation condition reaches 224 g/l in the northern DS basin and 280 g/l in the southern one).Based on TEM results we can reliably conclude that in 2005, when most of sinkholes had appeared at the surface, salt was located within a very low resistivity environment inside sediments saturated with DS brine. Intrusion of relatively fresh groundwater into the aquifer through the 600 × 600 m2area affected by sinkholes has not been observed.  相似文献   

15.
Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial characteristics of host structures, an AMT survey was conducted in mining area. Eighteen pseudo-2D resistivity sections were constructed through careful processing and inversion. These sections clearly show resistivity difference between the Silurian sandstones formation and quartz diorite porphyry and this porphyry copper formation was controlled by the highly resistive anticlines. Using 3D block Kriging interpolation method and 3D visualization techniques, we constructed a detailed 3D resistivity model of quartz diorite porphyry which shows the shape and spatial distribution of deep ore bodies. This case study can serve as a good example for future ore prospecting in and around this mining area.  相似文献   

16.
Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high‐chargeability low‐resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high‐resolution image of the top ~450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep‐resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ~1‐km depth.  相似文献   

17.
3D inversion of DC data using artificial neural networks   总被引:2,自引:0,他引:2  
In this paper, we investigate the applicability of artificial neural networks in inverting three-dimensional DC resistivity imaging data. The model used to produce synthetic data for training the artificial neural network (ANN) system was a homogeneous medium of resistivity 100 Ωm with an embedded anomalous body of resistivity 1000 Ωm. The different sizes for anomalous body were selected and their location was changed to different positions within the homogeneous model mesh elements. The 3D data set was generated using a finite element forward modeling code through standard 3D modeling software. We investigated different learning paradigms in the training process of the neural network. Resilient propagation was more efficient than any other paradigm. We studied the effect of the data type used on neural network inversion and found that the use of location and the apparent resistivity of data points as the input and corresponding true resistivity as the output of networks produces satisfactory results. We also investigated the effect of the training data pool volume on the inversion properties. We created several synthetic data sets to study the interpolation and extrapolation properties of the ANN. The range of 100–1000 Ωm was divided into six resistivity values as the background resistivity and different resistivity values were also used for the anomalous body. Results from numerous neural network tests indicate that the neural network possesses sufficient interpolation and extrapolation abilities with the selected volume of training data. The trained network was also applied on a real field dataset, collected by a pole-pole array using a square grid (8 ×8) with a 2-m electrode spacing. The inversion results demonstrate that the trained network was able to invert three-dimensional electrical resistivity imaging data. The interpreted results of neural network also agree with the known information about the investigation area.  相似文献   

18.
基于非结构网格的电阻率三维带地形反演   总被引:6,自引:3,他引:3       下载免费PDF全文
吴小平  刘洋  王威 《地球物理学报》2015,58(8):2706-2717
地表起伏地形在野外矿产资源勘察中不可避免,其对直流电阻率法勘探影响巨大.近年来,电阻率三维正演取得诸多进展,特别是应用非结构网格我们能够进行任意复杂地形和几何模型的电阻率三维数值模拟,但面向实际应用的起伏地形下电阻率三维反演依然困难.本文基于非结构化四面体网格,并考虑到应用GPS/GNSS时,区域地球物理调查中可非规则布设测网的实际特点,实现了任意地形(平坦或起伏)条件下、任意布设的偶极-偶极视电阻率数据的不完全Gauss-Newton三维反演.合成数据的反演结果表明了方法的有效性,可应用于复杂野外环境下的三维电法勘探.  相似文献   

19.
Sedimentary rocks beneath the Columbia River Basalt Group are recognized as having potential for oil and gas production, but the overlying layered basalts effectively mask seismic reflections from the underlying sediments. Four electromagnetic (EM) methods have been applied on profiles crossing Boylston Ridge, a typical east–west trending anticline of the Yakima Fold Belt, in an attempt to map the resistivity interface between the basalts and the sediments and to map variations in structure and resistivity within the sediments. The EM surveys detected strong variations in resistivity within the basalts, and in particular the continuous magnetotelluric array profiling (EMAP) revealed resistivity lows beneath the surface anticlines. These low resistivity zones probably coincide with fracturing in the core of the anticlines and they appear to correlate well with similar zones of low seismic velocity observed on a nearby seismic profile. The controlled-source EM surveys (in-loop transient, long-offset transient, and variable-offset frequency-domain) were designed in anticipation of relatively uniform high resistivity basalts, and were found to have been seriously distorted by the intrabasalt conductors discovered in the field. In particular, the resistivity sections derived from 1D inversions were found to be inconsistent and misleading. The EMAP survey provided the most information about the subsurface resistivity distribution, and was certainly the most cost-effective. However, both controlled-source and EMAP surveys call for accurate 2D or 3D inversion to accommodate the geological objectives of this project.  相似文献   

20.
近年来,海洋可控源电磁法(MCSEM)被引入油气勘探领域以降低勘探风险.在海洋环境中,受沉积因素所造成的电阻率各向异性的影响,地电模型往往会非常复杂.为更好地反映地下电性结构,本文实现了基于VTI各向异性介质的频率域海洋可控源电磁三维反演.其中,正演采用基于Yee氏交错网格的三维有限差分算法,所形成的离散线性系统通过大规模并行矩阵直接求解器(MUMPS)进行求解.反演采用基于不等式约束的有限内存BFGS(L-BFGS)算法.最后,利用VTI各向异性介质合成数据,分别进行了电阻率各向异性覆盖层和电阻率各向异性高阻层的三维反演,结果表明:(1)基于并行直接法的MCSEM非常适用于海洋电磁所特有的多场源问题;(2)针对各向异性覆盖层模型进行三维各向异性约束反演,提高了解的可靠性;(3)针对电阻率各向异性高阻层,Inline和broadside数据覆盖的反演结果对异常体位置有很好的反映.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号