首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of shock melts in four shergottites, having both vein and pocket geometry, has been defined and the conductive cooling time over the range 2500 °C to 900 °C calculated. Isolated 1 mm2 pockets cool in 1.17 s and cooling times increase with pocket area. An isolated vein 1 × 7 mm in Northwest Africa (NWA) 4797 cools to 900 °C in 4.5 s. Interference between thermal haloes of closely spaced shock melts decreases the thermal gradient, extending cooling times by a factor of 1.4 to 100. This is long enough to allow differential diffusion of Ar and Xe from the melt. Small pockets (1 mm2) lose 2.2% Ar and 5.2% Xe during cooling, resulting in a small change in the Ar/Xe ratio of the dissolved gas over that originally trapped. With longer cooling times there is significant fractionation of Xe from Ar and the Ar/Xe ratio increases rapidly. The largest pockets show less variation of Ar/Xe and likely preserve the original trapped gas composition. Considering all of the model calculations, even the smallest isolated pockets have cooling times greater than the duration of the pressure pulse, i.e., >0.01 s. The crystallization products of these shock melts will be unrelated to the peak shock pressure experienced by the meteorite.  相似文献   

2.
3.
The Monte Carlo program is used to predict the distributions of the muons which originate from primary cosmic gamma rays and reach sea level. The main result is the angular distribution of muons produced by vertical gamma rays which is necessary to predict the inherent angular resolution of any instrument utilizing muons to infer properties of gamma ray primaries. Furthermore, various physical effects are discussed which affect these distributions in differing proportions.  相似文献   

4.
The interest towards Mars is nowadays renewed as various satellites, already launched or foreseen for the future, will visit this planet, providing a new wealth of data. In particular, infrared spectroscopic observations need a parallel modelling effort for a proper interpretation of observations. The goal of our modelling is to evaluate the influence of a non negligible fraction of dust particles on intensity and profile of atmospheric Martian spectra. The joint effects of the atmosphere and the surface materials have been also accounted for. For the modelling, a version of the MODTRAN code, expressly modified for application to the Mars environment, has been used. As an example of the materials forming dust dispersed in the atmosphere and on the surface, we have considered andesite. Indices of refraction (n and k) of this material have been derived from laboratory measurements. The obtained results can have an important impact on the interpretation of infrared spectra that instruments such as TES (Thermal Emission Spectrometer), on board the Mars Global Surveyor, and PFS, in the Mars Express mission, will provide.  相似文献   

5.
The upwelling radiation at the top of the atmosphere is computed over a circular lake which is located in the uniform Lambert surface, using a modified version of the doubling-adding method. The radiance over the lake is discussed with respect to the atmospheric effect. The radius of the lake is assumed to be 0.5, 1, and 3 km. The observational site is located at altitude 30 km. The zenith of the observational site is located in the plane which is determined by the zenith of the center of the lake and incident solar direction. The zenith angle of the observational site to the center of the lake is fixed to 6.28°. The atmosphere is assumed to be homogeneous, which is composed of aerosol and molecule, where the model aerosol is of the oceanic or the water soluble types.Numerical simulation exhibits an extraordinary effect near the lake. The radiance of the lake against the surrounding depends upon the albedo of the surrounding surface. It increases with the increase of the size of the lake and decreases with the optical thickness. At large optical depth, the radiance depends upon the aerosol characteristics. It shows little dependence on the solar zenith angle if less than 60°.  相似文献   

6.
Numerical solutions of the equations of meteor ablation in the Earth's atmosphere have been obtained using a variable step size Runge-Kutta technique in order to determine the size of the residual mass resulting from atmospheric flight. The equations used include effects of meteoroid heat capacity and thermal radiation, and a realistic atmospheric density profile. Results were obtained for initial masses in the range 10?7–10?2 g, and for initial velocities less than 24 km s?1 (results indicated no appreciable residual mass for meteors with velocities above 24 km s?1 in this mass range). The following function has been obtained to provide the logarithm of the ratio of the residual mass following atmospheric ablation to the original preatmospheric mass
log r = 4.7 ?0.33v ?0.013v2 + 1.2 log m + 0.08 log2 m ?0.083v log mM
The pre-atmospheric mass and velocity are represented by m and v.When the results are expressed in terms of the size of the residual mass following atmospheric ablation as a function of the initial mass and velocity, it is found that the final residual mass is almost independent of the original mass of the meteoroid, but very strongly dependent on the original velocity. For example, the residual mass is very nearly 10?7 g for a meteoroid with velocity 18 kms?1 for initial masses from 10?7 to 10?3 g. On the other hand, a slight change in the initial velocity to 20 km s?1 will shift the residual mass to approx. 10?8 g. This strong velocity dependence coupled with the weak dependence on the original mass has important consequences for the sampling of ablation product micrometeorites.  相似文献   

7.
8.
Saturn atmospheric temperatures at the 150-mbar level retrieved from Voyager IRIS measurements indicate the presence of small-scale meridional gradients which are approximately symmetric with respect to the equator, but are superposed on a large-scale hemispheric thermal asymmetry. Under the assumption that the retrieved values at this atmospheric level represent kinetic temperatures on a constant pressure surface, it is suggested that the small-scale structure is produced by a meriodional circulation associated with the dissipative decay of the zonal winds with height, while the hemispheric asymmetry represents a thermal response to the seasonally varying insolation. The small-scale gradients are correlated with zonal winds derived from Voyager images at mid and high latitudes through the thermal wind relation; the calculated thermal wind shears suggest a decay with height of the jet system toward a state of uniform eatward flow. The existence of the approximately symmetric zonal winds and associated temperature gradients in the presence of a large-scale seasonal thermal response suggests that the jet system is driven at depths substantially below the levels where seasonally modulated insolation is important (p?0.5 bar).  相似文献   

9.
A mechanism has been proposed for uv-accelerated desorption from Fe2+ sites on mineral surfaces that satisfies kinetic constraints determined in the laboratory by Huguenin. The process is an integral step of the photochemical weathering mechanism for producing dust on Mars, and it now appears that it may play primary roles in stabilizing CO2 against dissociation by sunlight and in controlling the oxidation state of the atmosphere. We propose that adsorption occurs at octahedrally coordinated Fe2+ surface sites to form seven-coordinate transition-state complexes. These complexes acquire 16–18 kcal mole?1 of ligand field stabilization energy. During illumination (λ ≤ 0.35 μm), electrons are photoemitted from the surfaced Fe2+, temporarily oxidizing them to Fe3+. Fe3+ has no ligand field stabilization energy, and the complexes lose 16–18 kcal mole?1 of stabilization energy. This is a large fraction of the 19- to 28-kcal mole?1 activation energy for dissociating the complexes, and desorption should proceed spontaneously. The gases that were observed to undergo adsorption-photodesorption include O2, CO2, CO, H2O, N2, and Ar. Photodesorption can drive several catalytic reactions, one of which is the oxidation of CO to CO2. The rate of this reaction should be limited by the supply of CO and O2 to the surface to ~2 × 1012 cm?2 sec?1 (column photodissociation rate of CO2). By including this surface reaction in models of Martian atmospheric CO2 chemistry, CO2 can be stabilized against photodissociation with eddy diffusion coefficients of only 3 × 105?1 × 107 cm2 sec?1 below 40 km, raising to ~ 109 cm2 sec?1 at 140 km. Odd hydrogen is not needed to catalyze the oxidation of CO below 40 km, and odd hydrogen mixing ratios need only to be fH ? 10?10 to depress ozone concentrations below the observed upper limit in equatorial regions. Another catalytic reaction that should be driven by photodesorption on Mars is 20H?(ads)H2O + 12O2(g) + 2e?crystal. This is an important source of atmospheric O2, amounting to 7 × 1013?2 × 1017 O2 molecules cm?2 yr?1, and it could have a significant effect on atmospheric oxidation state.  相似文献   

10.
We present measurements of the dimensionless spin parameters and inner-disc inclination of two stellar-mass black holes. The spin parameter of SWIFT J1753.5−0127 and GRO J1655−40 is estimated by modelling the strong reflection signatures present in their XMM–Newton observations. Using a newly developed, self-consistent reflection model which includes the blackbody radiation of the disc as well as the effect of Comptonization, blurred with a relativistic line function, we infer the spin parameter of SWIFT J1753.5−0127 to be  0.76+0.11−0.15  . The inclination of this system is estimated at  55°+2−7  . For GRO J1655−40, we find that the disc is significantly misaligned to the orbital plane, with an innermost inclination of  30°+5−10  . Allowing the inclination to be a free parameter, we find a lower limit for the spin of 0.90, this value increases to that of a maximal rotating black hole when the inclination is set to that of the orbital plane of J1655−40. Our technique is independent of the black hole mass and distance, uncertainties in which are among the main contributors to the spin uncertainty in previous works.  相似文献   

11.
To evalute the effect of the non-uniform surface on the radiation field, the upwelling radiation at the top of the atmosphere bounded by the checkerboard type of terrain is computed using the modified doubling method. The terrain is composed of the square Lambert surfaces with two different albedoes. The dimension of the each square is assumed to be 0.5–6 km. The radiance of the terrain is discussed with respect to the atmospheric effect. The observational site is located at altitude 30 km. The corresponding projected point on the ground is located at the center of a square. The solar and observational direction is located in the plane parallel to the checkerboard squares. The atmosphere is assumed to be homogeneous, which is composed of aerosol and molecules, where the model aerosol is of the oceanic or the water soluble types.Numerical simulation exhibits the extraordinary effect near the edge of each squares. The radiance of the terrain depends upon the difference of albedoes and size of squares. It increases with the increase of the dimension of the square. It decreases with the optical thickness. At large optical thickness, the variation of radiation with zenith direction depends upon the aerosol characteristics. It shows little dependence on the solar zenith angle if less than 20°.  相似文献   

12.
New statistical results for cosmic gamma-ray bursts are presented, based on aligned average time profiles. General signatures are discussed of averaged flux/spectrum evolution of the full set of the Second BATSE Catalog GRBs (Fishmanet al., 1995), as well as of the bright and dim subsets. The contradictory conclusions made by Norriset al., (1994) and Mitrofanovet al., (1995a) about the presence or the absence of the time-dilation of dim GRBs are discussed. The well-established effect of hardness/brightness correlation of GRBs is presented. The consequences of these statistical studies are discussed for the cosmological and galactic paradigms of GRBs sources.  相似文献   

13.
14.
Formulae relating atmospheric density to the rate of change of period of a satellite have been obtained by various workers for two asymptotic cases: (i) eccentricity e small (< 0.3) and (ii) e large (> 0.012). These results arc reviewed, and in the overlapping region, 0.012 < e < 0.3, the formulae are shown to be in agreement to the various orders of magnitude considered.  相似文献   

15.
The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates.   相似文献   

16.
A reanalysis of the Mars Atmospheric Water Detector (MAWD, Viking 1 and 2 Orbiters) Planetary Data System (PDS) data set (Jakosky, B.M., Farmer, C.B. [1982]. J. Geophys. Res. 87 (B4), 2999-3019) is presented taking into account a new spectroscopic database and improved atmospheric model assumptions. Starting from HITRAN 2004 edition and later (Rothman, L.S., and 29 colleagues [2005]. J. Quant. Spectrosc. Radiat. Trans. 96, 139-204), the number of lines in the 1.38-μm band has been significantly increased, and their parameters have been modified. The implication of this new spectroscopic data and atmospheric model based on Martian Climate Database (MCD, Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., Huot, J.-P. [1999]. J. Geophys. Res. 104 (E10), 24155-24176) gives a significant impact on the H2O retrieval: the total H2O abundance after the reanalysis has decreased twofold in all seasons and most of geographic locations. Overall decrease is associated with larger cumulative strength of the band in HITRAN 2004; low saturation height of water profiles imposed by MCD significantly contributes to decrease of summer polar maximum. Revised MAWD data are compared with later H2O measurements on Mars Global Surveyor (MGS) and Mars-Express (MEX). A good agreement with SPICAM/MEX near-IR (1.38-μm band) measurements is found. However, both sets of near-IR measurements are systematically below TES/MGS results obtained in thermal infrared, with a factor of 1.5-2.0. This difference might be associated with remaining ambiguity of the near IR spectral data, and of line broadening in CO2 in both spectral ranges. The reanalyzed MAWD data are in much better agreement with later measurements suggesting more homogeneous, and significantly dryer water cycle on Mars, with no signature of change between the Viking epoch (MY12-14) and MGS-Mars-Express measurements (MY24-29).  相似文献   

17.
《Icarus》1987,72(1):62-68
Direct imaging of Neptune through an 8900-Å methane-band filter with the University of Hawaii 2.24-m telescope at Mauna Kea Observatory shows discrete atmospheric cloud features. A rotation period of 17.86 ± 0.02 hr is derived from the observations of two transits of a bright feature in the southern hemisphere during May and June 1986. This period is consistent with earlier observations of cloud motion on Neptune. The imaging also shows that bright features in Neptune's northern hemisphere seen as recently as in 1983 by earlier investigations have disappeared, markedly changing the overall distribution of reflected light from the planetary disk.  相似文献   

18.
Abstract— In this study, we have performed pulse‐heating experiments at different temperatures for three organic molecules (a polycyclic aromatic hydrocarbon [PAH], a ketone, and an amino acid) absorbed into microporous aluminum oxide (Al2O3) in order to imitate the heating of the organic molecules in interplanetary dust particles (IDPs) and micrometeorites (MMs) during atmospheric entry and to investigate their survival. We have shown that modest amounts (a few percent) of these organic molecules survive pulse‐heating at temperatures in the 700 to 900 °C range. This suggests that the porosity in IDPs and MMs, combined with a sublimable phase (organic material, water), produces an ablative cooling effect, which permits the survival of organic molecules that would otherwise be lost either by thermal degradation or evaporation during atmospheric entry.  相似文献   

19.
《Planetary and Space Science》1999,47(10-11):1225-1242
Infrared spectra of Jupiter and Saturn have been recorded with the two spectrometers of the Infrared Space Observatory (ISO) in 1995–1998, in the 2.3–180 μm range. Both the grating modes (R=150–2000) and the Fabry-Pérot modes (R=8000–30,000) of the two instruments were used. The main results of these observations are (1) the detection of water vapour in the deep troposphere of Saturn; (2) the detection of new hydrocarbons (CH3C2H, C4H2, C6H6, CH3) in Saturn’s stratosphere; (3) the detection of water vapour and carbon dioxide in the stratospheres of Jupiter and Saturn; (4) a new determination of the D/H ratio from the detection of HD rotational lines. The origin of the external oxygen source on Jupiter and Saturn (also found in the other giant planets and Titan in comparable amounts) may be either interplanetary (micrometeoritic flux) or local (rings and/or satellites). The D/H determination in Jupiter, comparable to Saturn’s result, is in agreement with the recent measurement by the Galileo probe (Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., Niemann, H.B., 1998. Galileo probe measurements of D/H and 3He/4He in Jupiters atmosphere. Space Science Rev. 84 251–263); the D/H values on Uranus and Neptune are significantly higher, as expected from current models of planetary formation.  相似文献   

20.
Bjarne S. Haugstad 《Icarus》1978,35(3):422-435
The intensities of radio and optical signals observed during spacecraft and stellar occultations by planets scintillate due to atmospheric turbulence. The combined effect of turbulent fluctuations in refractivity and the average atmospheric gradient are found to produce slightly smaller signal intensity scintillations than the homogeneous case when there is no gradient, in contrast to a prediction that the scintillations would be markedly increased. Profiles of atmospheric temperature and pressure derived from intensity measurements are found to have much larger errors due to turbulence than do the corresponding profiles derived from radio Doppler frequency measurements. However, such errors are still small in the limit of weak scattering, which is assumed here. Radio and optical occultation experiments tend to be complementary since the generally shorter distances involved in the former mean that the radio experiments can probe relatively deeply into the atmosphere, while the optical experiments are limited to tenuous atmospheric regions. Because the radio experiments generally have a much greater dynamic measurement range, they are more likely to encounter conditions where strong scattering occurs than will the optical occultation experiments, provided the rms turbulent refractivity increases with depth approximately as the refractivity of the quiescent atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号