首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An IMF-sense-dependent first order (or unidirectional) anisotropy of cosmic rays, which is produced perpendicularly to the ecliptic from the radial density gradient in solar system, has been confirmed by Swinson. In the present paper, we point out the existence of IMF-sense-dependent higher order anisotropies, based on the simulation of cosmic ray diffusion-convection in the heliomagnetosphere. In order to confirm their existence, we demonstrate some examples of the observed cosmic ray daily variation which is supposed to be due to these anisotropies.  相似文献   

2.
袁强 《天文学报》2023,64(5):49-11
高能宇宙线的起源、加速和传播是重大的前沿科学问题,回答该问题需要对宇宙线的能谱、各向异性以及各类高能天体电磁辐射进行精确观测.通过空间粒子探测器对宇宙线各成分能谱的直接测量是研究宇宙线物理问题的重要手段.中国于2015年底发射并持续运行至今的暗物质粒子探测卫星以其大接受度、高能量分辨率等特点,在宇宙线直接探测方面取得了系列重要成果,揭示出质子、氦核、硼碳和硼氧比例等宇宙线能谱的新结构,为理解宇宙线起源等科学问题提供了新的依据.介绍了暗物质粒子探测卫星的仪器设置、运行状况、科学成果及其物理意义.  相似文献   

3.
Gamma-ray background counting rates encountered in astronomy observations are calculated for a double Compton scatter telescope. Backgrounds not eliminated by the usual growth curve could be produced by albedo neutrons and/or cosmic ray protons interacting with the carbon and/or hydrogen of the detector. They are the albedo neutron-carbon interaction gamma-rays, cosmic ray proton interaction delayed gamma rays and the moderated albedo neutron-proton photocapture gamma rays. It is decisive to know the contribution of these backgrounds, because they must be subtracted before the cosmic diffuse flux can be determined. Estimates of the neutron induced background events in a Compton telescope show that they might contribute a considerable fraction of the counting rate. In the near future the calculations will be checked with a calibrated neutron beam.  相似文献   

4.
In previous papers (A.D. Erlykin, A.W. Wolfendale, Astropart. Phys. 7 (1997) 1, 203; 8 (1998) 265; J. Phys. G 23 (1997) 979), we presented evidence for structure in the size spectrum of cosmic ray air showers which we interpreted as due to the presence of oxygen and iron nuclei from a local, recent, supernova remnant. Although the energies in question are 3 × 1015 eV and 1.2 × 1016 eV, well above those where direct measurements are possible, the direct measurements are, in fact, relevant. We find that the direct measurements are quite consistent with an extrapolation back of our spectra. Indeed, taken alone, the direct measurements themselves provide strong evidence for the existence of an extra, single source contribution to the total energy spectrum. The paper also includes a discussion of the high energy electron spectrum, anisotropies and the likely site of the local SNR.  相似文献   

5.
In this paper, we show how the rescattering of cosmic microwave background photons after cosmic reionization can give a significant linear contribution to the temperature–matter cross-correlation measurements. These anisotropies, which arise via a late-time Doppler effect, are on scales much larger than the typical scale of non-linear effects at reionization; they can contribute to degree scale cross-correlations and could affect the interpretation of similar correlations resulting from the integrated Sachs–Wolfe effect. While expected to be small at low redshifts, these correlations can be large given a probe of the density at high redshift, and so could be a useful probe of the cosmic reionization history.  相似文献   

6.
The differential current density and anisotropy seen by an observer moving relative to the frame of reference in which a flux of cosmic ray particles or photons is isotropic, is derived assuming that the observer's speed is small. The results are applied to examples relevant to the theory of cosmic ray modulation and the expected anisotropies of photons originating outside our galaxy.This research was supported by the Advanced Research Projects Agency (Project DEFENDER) and was monitored by the U.S. Army Research Office-Durham under Contract DA-31-124-ARO-D-257, and by NASA under contract #NGR-05-009-081.  相似文献   

7.
We examine the possibility that recent data on cosmic ray anisotropies presented by the AGASA group may lead to the conclusion that our Galactic Center is a major source of the highest energy cosmic rays in our galaxy. We discuss how such a source would contribute to the magnitude and directional properties of the observed flux when measured against a background of extragalactic cosmic rays. We do this using the results of previous propagation calculations and our own more recent calculations which are specifically for a Galactic Center source.We find that the AGASA data can indeed be plausibly interpreted in this way and also that an argument can be made that the Galactic Center has the appropriate physical properties for acceleration to energies of the order of 1018 eV. We show that data from the SUGAR array are compatible with the AGASA result.  相似文献   

8.
The limitations on the nature of cosmic ray acceleration regions and processes, as deduced from cosmic ray measurements and propagation studies, are reviewed. The power requirements for these acceleration regions are estimated from measurements of the local cosmic ray energy density, anisotropy and spallation-deduced pathlength. Possible constraints on the acceleration spectrum of the cosmic rays and on a charge dependence of the acceleration process, implied by the measured cosmic ray spectrum and composition, are considered. Various suggested sources and processes of cosmic ray acceleration are discussed in the light of these limitations.Astrophysics and Space Science Review Paper.  相似文献   

9.
Measurements have been made on the cosmic gamma rays of energy between 0.25 and 4.2 MeV from a balloon experiment made near the geomagnetic equator using a collimated 7.6 cm×7.6 cm NaI(T1) crystal assembly. The depth-intensity curves obtained were used to estimate the contribution due to the diffuse cosmic gamma rays in the above energy interval; an unfolding of the counting rates was then performed to obtain the energy spectrum. It is found that a power law fitted to the present data points has a spectral index of –1.8±0.2. A critical examination is then made of all the observational data between 1 keV and 100 MeV to deduce information on the spectral shape in this energy region. Upper limits on low energy gamma ray fluxes from Sco X-1 and the Galactic centre region are also reported.  相似文献   

10.
We study the impact of possible spiral-arm distributions of Galactic cosmic-ray sources on the flux of various cosmic-ray nuclei throughout our Galaxy. We investigate model cosmic-ray spectra at the nominal position of the sun and at different positions within the Galaxy. The modelling is performed using the recently introduced numerical cosmic ray propagation code Picard. Assuming non-axisymmetric cosmic-ray source distributions yields new insights on the behaviour of primary versus secondary nuclei.We find that primary cosmic rays are more strongly confined to the vicinity of the sources, while the distribution of secondary cosmic rays is much more homogeneous compared to the primaries. This leads to stronger spatial variation in secondary to primary ratios when compared to axisymmetric source distribution models. A good fit to the cosmic-ray data at Earth can be accomplished in different spiral-arm models, although leading to decisively different spatial distributions of the cosmic-ray flux. These lead to different cosmic ray anisotropies, where even reproducing the data becomes possible. Consequently, we advocate directions to seek best fit propagation parameters that take into account the higher complexity introduced by the spiral-arm structure on the cosmic-ray distribution. We specifically investigate whether the flux at Earth is representative for a large fraction of the Galaxy. The variance among possible spiral-arm models allows us to quantify the spatial variation of the cosmic-ray flux within the Galaxy in presence of non-axisymmetric source distributions.  相似文献   

11.
We use the large cosmological Millennium Simulation (MS) to construct the first all-sky maps of the lensing potential and the angle, aiming at gravitational lensing of the cosmic microwave background (CMB), with the goal of properly including small-scale non-linearities and non-Gaussianity. Exploiting the Born approximation, we implement a map-making procedure based on direct ray tracing through the gravitational potential of the MS. We stack the simulation box in redshift shells up to z ∼ 11, producing continuous all-sky maps with arcmin angular resolution. A randomization scheme avoids the repetition of structures along the line of sight, and structures larger than the MS box size are added to supply the missing contribution of large-scale (LS) structures to the lensing signal. The angular power spectra of the projected lensing potential and the deflection-angle modulus agree quite well with semi-analytic estimates on scales down to a few arcmin, while we find a slight excess of power on small scales, which we interpret as being due to non-linear clustering in the MS. Our map-making procedure, combined with the LS adding technique, is ideally suited for studying lensing of CMB anisotropies, for analysing cross-correlations with foreground structures, or other secondary CMB anisotropies such as the Rees–Sciama effect.  相似文献   

12.
The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: a generic calculation indicates that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e. they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies and derive cosmic ray spectra under the assumption of hadronic emission. The cosmic ray spectra show a large variety in their energy budget, spectral behavior and maximum energy. These sources are assumed to be representative for the total class of SNRs, where we assume that about 100–200 cosmic ray emitting SNRs should be present today. Finally, we use these source spectra to simulate the cosmic ray transport from individual SNRs in the Galaxy with the GALPROP code for cosmic ray propagation. We find that the cosmic ray budget can be matched well for these sources. We conclude that gamma-ray emitting SNRs can be a representative sample of cosmic ray emitting sources. In the future, experiments like CTA and HAWC will help to distinguish hadronic from leptonic sources and to further constrain the maximum energy of the sources and contribute to producing a fully representative sample in order to further investigate the possibility of SNRs being the dominant sources of cosmic rays up to the knee.  相似文献   

13.
Comparison of Explorer 34 observations on solar protons in the energy range 0.7–55 MeV with similar observations from other spacecrafts show that the large field aligned anisotropies which are observed during the rise time of a flare event change to an equilibrium anisotropy coming radially from the sunward direction due to the convective removal of the solar particles. At very late times during the decay (T 4 days) the anisotropy is observed to be from a direction 45° E of the satellite-Sun line which is interpreted as indicative of positive density gradient of solar cosmic ray population. The dependence of both types of equilibrium anisotropies on the energy and the velocity of the particles and on plasma velocity are shown to be in agreement with the theoretical predictions. The amplitude of the large field aligned anisotropies observed earlier in the event is found to be independent of the rise time of the event and to vary as (Vt)–1.Interplanetary magnetic sector crossings during a flare event, cause abrupt changes in both the amplitude and phase of the non-equilibrium anisotropy whereas they have no significant effect on equilibrium anisotropy. The effect of azimuthal density gradients on the decay time constants of flare enhancements are also examined in an attempt to understand the complicated structures, often observed, in the time intensity profiles at low energies.Part of this work was done while the author was at the University of Texas as Dallas, U.S.A.Now at the National Academy of Sciences, Washington, D.C.  相似文献   

14.
The data on primary cosmic ray fluxes at the top of the atmosphere are given for the period since 1937 till the present time. These data have been obtained from the regular cosmic ray flux measurements in the stratosphere and on the ground level. They have been used to find the relationship of cosmic ray fluxes with solar activity (sunspot number). On the basis of the deduced relationship the cosmic ray fluxes in the past have been recovered, as the sunspot number is known since 1500. The link between the smoothed data on Be-10 atom concentrations and cosmic ray fluxes is established which gives a possibility to calculate cosmic ray fluxes in the far past.  相似文献   

15.
In the present work the cosmic ray data of three different neutron monitoring stations, Deep River, Inuvik, and Tokyo, located at different geomagnetic cutoff rigidities and altitudes have been harmonically analyzed for the period 1980–95 for a comparative study of diurnal semi-diurnal and tri-diurnal anisotropies in cosmic ray intensity in connection with the change in interplanetary magnetic field Bz component and solar wind velocity on 60 quietest days. It is observed that the amplitudes of all the three harmonics increase during the period 1982–84 at all the stations during the high speed solar wind stream epoch and remain low during the declining phase of the stream. The amplitudes of the three harmonics have no obvious characteristics associated with the time variation of magnitude of the Bz component. The phases of all the three harmonics have no time variation characteristics associated with solar wind velocity and Bz. Published in Astrofizika, Vol. 49, No. 4, pp. 651–664 (August 2006).  相似文献   

16.
宇宙线从发现起至今已超过百年。在20世纪上半叶,大型粒子加速器技术成熟以前,对宇宙线的研究引领着基本粒子物理的发展,从宇宙线研究中取得的多项成果斩获诺贝尔奖。21世纪,宇宙线因其与极端高能的物理规律和暗物质等新物理现象联系密切而绽放出新的活力,宇宙线起源、加速、传播等相关的天文学及物理学问题也备受关注。简述了近年来在空间直接观测宇宙线实验方面取得的进展,以及其对理解宇宙线物理问题的推动。最后概述了中国在相关领域的研究历程和现状。  相似文献   

17.
Data obtained by the Explorer 34 satellite regarding the degree of anisotropy of ≳ 70 keV electrons of solar origin are reported. It is shown that the anisotropies are initially field aligned, and that they decay to ≲ 10% in a time of the order of 1 hr. The decays of the concurrent ionic and electronic anisotropies for one well observed event are in good agreement with the diffusive propagation model of Fisk and Axford. The data suggest parallel diffusion coefficients for both ions and electrons that are rigidity independent. From considerations of a long lived electron event, it is shown that the electronic fluxes exhibit ‘equilibrium’ anositropies at late times. These are interpreted as indicating that convective removal at the solar wind velocity is the dominant mechanism whereby solar cosmic ray electrons (∼- 70 keV) leave the solar system. They also indicate that there is a positive density gradient at late times in a solar electron event. The data suggest that this was established prior to the establishment of a similar gradient for the cosmic ray ions. This research was supported by the National Aeronautics and Space Administration under contracts NASr-198 and NAS5-9075. The research in India was supported by funds from the Department of Atomic Energy, Government of India and funds from the grant NAS-1492 from the National Academy of Sciences, U.S.A. Support in data analysis was also provided by Air Force Cambridge Research Laboratories, and by the Australian Research Grants Committee.  相似文献   

18.
宇宙线发现百年以来,宇宙线起源仍然是一个谜.研究宇宙线起源主要在甚高能(VHE)伽马射线天文学和宇宙线物理学两个领域交叉展开.新一代高海拔宇宙线观测站(LHAASO)拥有高海拔、全天候和大规模优势,利用多种探测手段对宇宙线开展联合观测,大幅提升对伽马射线和宇宙线的鉴别能力.LHAASO将开展全天区伽马源扫描搜索以大量发现新伽马源,将获得30TeV以上伽马射线探测的最高灵敏度,将在宽达5个数量级的能量范围内精确测量宇宙线分成份能谱,为揭开宇宙线起源谜团给出重要判据.系统介绍了LHAASO的探测器结构、性能优势和科学目标.  相似文献   

19.
20.
Gamma ray burst (GRB) fireballs provide one of very few astrophysical environments where one can contemplate the acceleration of cosmic rays to energies that exceed 1020 eV. The assumption that GRBs are the sources of the observed cosmic rays generates a calculable flux of neutrinos produced when the protons interact with fireball photons. With data taken during construction IceCube has already reached a sensitivity to observe neutrinos produced in temporal coincidence with individual GRBs provided that they are the sources of the observed extra-galactic cosmic rays. We here point out that the GRB origin of cosmic rays is also challenged by the IceCube upper limit on a possible diffuse flux of cosmic neutrinos which should not be exceeded by the flux produced by all GRB over Hubble time. Our alternative approach has the advantage of directly relating the diffuse flux produced by all GRBs to measurements of the cosmic ray flux. It also generates both the neutrino flux produced by the sources and the associated cosmogenic neutrino flux in a synergetic way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号