首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate monitoring of surface water location and extent is critical for the management of diverse water resource phenomena. The multi-decadal archive of Landsat satellite imagery is punctuated by missing data due to cloud cover during acquisition times, hindering the assembly of a continuous time series of inundation dynamics. This study investigated whether streamflow volume measurements could be integrated with satellite data to fill gaps in monthly surface water chronologies for the Central Valley region of California, USA, from 1984 to 2015. We aggregated measurements of maximum monthly water extent within each of the study area’s 50 8-digit hydrologic unit code (HUC) watersheds from two Landsat-derived datasets: the European Commission’s Joint Research Centre (JRC) Monthly Water History and the U.S. Geological Survey Dynamic Surface Water Extent (DSWE). We calculated Spearman rank correlation coefficients between water extent values in each HUC and streamflow discharge data. Linear regression fits of the water extent/streamflow data pairs with the highest correlations served as the basis for interpolation of missing imagery surface water values on a HUC-wise basis. Results show strong (ρ > 0.7) maximum correlations in 11 (22.4%) and 25 (51.0%) HUCs for the DSWE and JRC time series, respectively, when comparisons were restricted to imagery and gages co-located in each HUC. Strong maximum correlations occurred in 39 (79.6%; DSWE) and 42 (85.7%; JRC) HUCs when imagery was paired with discharge data from any study area gage, providing a solid basis for reconstruction of water extent values. We generated continuous time series of 30+ years in 35 HUCs, demonstrating that this technique can provide quantitative estimates of historical surface water extents and elucidate flooding or drought events over the period of data collection. Results of a non-parametric trend analysis of the long-term time series on an annual, seasonal, and monthly basis varied among HUCs, though most trends indicate an increase in surface water over the past 30 years.  相似文献   

2.
Site-specific information of crop types is required for many agro-environmental assessments. The study investigated the potential of support vector machines (SVMs) in discriminating various crop types in a complex cropping system in the Phoenix Active Management Area. We applied SVMs to Landsat time-series Normalized Difference Vegetation Index (NDVI) data using training datasets selected by two different approaches: stratified random approach and intelligent selection approach using local knowledge. The SVM models effectively classified nine major crop types with overall accuracies of >86% for both training datasets. Our results showed that the intelligent selection approach was able to reduce the training set size and achieved higher overall classification accuracy than the stratified random approach. The intelligent selection approach is particularly useful when the availability of reference data is limited and unbalanced among different classes. The study demonstrated the potential of utilizing multi-temporal Landsat imagery to systematically monitor crop types and cropping patterns over time in arid and semi-arid regions.  相似文献   

3.
单窗算法结合Landsat8热红外数据反演地表温度   总被引:4,自引:0,他引:4  
Landsat热红外系列数据一直是地表温度反演重要的遥感数据源,目前用于地表温度反演的单窗算法主要针对Landsat TM/ETM+第6波段数据(TM 6)建立的,Landsat 8热红外传感器(TIRS)与TM 6相比有很多变化,因而其单窗算法也需要改进。本文以Landsat 8 TIRS第10波段(TIRS 10)为数据源,提出了针对TIRS 10的单窗算法(TIRS10_SC),并对研究区地表温度进行反演研究,确定了研究区不同类型地表的温度值。研究结果表明:(1)TIRS10_SC算法可以较好地应用于Landsat 8数据的地表温度反演,平均反演误差为0.83℃,相关系数为0.805,反演温度与模拟数据和实测数据都具有较好的一致性;(2)通过对单窗算法中的地表发射率、大气水汽含量和大气平均作用温度等参数敏感性分析发现,TIRS10 SC算法能够获得较为可靠的反演结果;同时,TIRS10 SC算法对大气水汽含量和地表发射率敏感性较高,对大气平均作用温度敏感性稍弱。该算法对于利用Landsat 8 TIRS数据快速反演地表温度具有应用价值。  相似文献   

4.
Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists.  相似文献   

5.
An accurate map of forest types is important for proper usage and management of forestry resources. Medium resolution satellite images (e.g., Landsat) have been widely used for forest type mapping because they are able to cover large areas more efficiently than the traditional forest inventory. However, the results of a detailed forest type classification based on these images are still not satisfactory. To improve forest mapping accuracy, this study proposed an operational method to get detailed forest types from dense Landsat time-series incorporating with or without topographic information provided by DEM. This method integrated a feature selection and a training-sample-adding procedure into a hierarchical classification framework. The proposed method has been tested in Vinton County of southeastern Ohio. The detailed forest types include pine forest, oak forest, and mixed-mesophytic forest. The proposed method was trained and validated using ground samples from field plots. The three forest types were classified with an overall accuracy of 90.52% using dense Landsat time-series, while topographic information can only slightly improve the accuracy to 92.63%. Moreover, the comparison between results of using Landsat time-series and a single image reveals that time-series data can largely improve the accuracy of forest type mapping, indicating the importance of phenological information contained in multi-seasonal images for discriminating different forest types. Thanks to zero cost of all input remotely sensed datasets and ease of implementation, this approach has the potential to be applied to map forest types at regional or global scales.  相似文献   

6.
Land-cover change may affect water and carbon cycles when transitioning from one land-cover category to another (land-cover conversion, LCC) or when the characteristics of the land-cover type are altered without changing its overall category (land-cover modification, LCM). Given the increasing availability of time-series remotely sensed data for earth monitoring, there has been increased recognition of the importance of accounting for both LCC and LCM to study annual land-cover changes. In this study, we integrated 1,513 time-series Landsat images and a change-updating method to identify annual LCC and LCM during 1986–2015 in the coastal area of Zhejiang Province, China. The purpose was to quantify their contributions to land-cover changes and impacts on the amount of vegetation. The results show that LCC and LCM can be successfully distinguished with an overall accuracy of 90.0%. LCM accounted for 22% and 40.5% of the detected land-cover changes in reclaimed and inland areas, respectively, during 1986–2015. In the reclaimed area, LCC occurred mostly in muddy tidal flats, construction land, aquaculture ponds, and freshwater herbaceous land, whereas LCM occurred mostly in freshwater herbaceous land, Spartina alterniflora, and muddy tidal flats. In the inland area, both LCC and LCM were concentrated in forest and dryland. Overall, LCC had a mean magnitude of normalized difference vegetation index (NDVI) change similar to that of LCM. However, LCC had a positive effect and LCM had a negative effect on NDVI change in the reclaimed area. Both LCC and LCM in the inland area had negative impacts on vegetation greenness, but LCC resulted in larger NDVI change magnitude. Impacts of LCC and LCM on vegetation greenness were quantified for each land-cover type. This study provided a methodological framework to take both LCC and LCM into account when analyzing land-cover changes and quantified their effects on coastal ecosystem vegetation.  相似文献   

7.
This study developed an impervious surface fraction algorithm (ISFA) for automatic mapping of urban areas from Landsat data. We processed the data for 2001 and 2014 to trace the urbanization of Tegucigalpa, the capital city of Honduras, using a four-step procedure: (1) data pre-processing to perform image reflectance normalization, (2) quantification of impervious surface area (ISA) using ISFA, (3) accuracy assessment of mapping results and (4) change analysis of urban growth. The mapping results compared with the ground reference data confirmed the validity of ISFA for automatic delineation of ISA in the study region. The overall accuracy and Kappa coefficient achieved for 2001 were 92.8% and 0.86, while the values for 2014 were 91.8% and 0.84, respectively. The results of change detection between the classification maps indicated that ISA increased approximately 1956.7 ha from 2001 to 2014, mainly attributing to the increase of the city’s population.  相似文献   

8.
作为驱动地表与大气之间能量交换的关键物理量,地表温度在众多领域中都发挥着重要作用,包括气候变化、环境监测、蒸散发估算以及地热异常勘探等.Landsat热红外数据因其时间连续性和高空间分辨率等特点被广泛应用于地表温度反演中.本文详细地介绍了Landsat热红外传感器及其可用的数据与产品的现状,梳理了2001年-2020年...  相似文献   

9.
With the longest archive of satellite remote sensing images, the Landsat series of satellites have demonstrated their great potential in aquatic environmental studies. However, although various atmospheric correction (AC) methods have been developed for Landsat observations in water color applications, a comprehensive assessment of their accuracies across different AC methods and instruments has yet to be performed. Using in situ spectral data collected by Aerosol Robotic Network-Ocean Color (AERONET-OC) sites, the performances of five types of AC methods over three different Landsat missions (i.e., Landsat 5/7/8) were evaluated. The Landsat 8 Operational Land Imager (OLI) showed more accurate AC retrievals than the other two instruments, and the results for its green and red bands appeared more reliable than those for the other wavelengths (uncertainty levels of ∼30 %). The iterative NIR algorithm with 2-bands (NIR-SWIR2) model selection embedded in SeaDAS showed the best performances for OLI in two blue bands. Moreover, larger residual errors were found for most Landsat 5/7 bands regardless of the AC methods and spectral bands employed with an uncertainty of >50 %. Interestingly, a simple aerosol subtraction method over the Rayleigh-corrected reflectance (Rrc) outperformed the exponential extrapolation (EXP) algorithms, especially for Landsat 5/7. Neither the image-based AC algorithm nor the surface reflectance (SR) products provided by the United States Geological Survey (USGS) showed acceptable performances over coastal environments. The uncertainties in the various Landsat reflectance products over water surfaces could be associated with a relatively poor signal-to-noise ratio (SNR) in addition to radiometric calibration uncertainties, imperfect aerosol removal methods. Future research is required to collect in situ data across a wider range of water optical properties (particularly more turbid inland waters) to examine the corresponding applicability of Landsat-series observations.  相似文献   

10.
如何综合可见光波段信息提高地表温度的空间分辨率一直是热红外遥感应用研究的重要方向。以北京市Landsat TM图像为数据源,对比分析了SUTM和E-Dis Trad模型地表温度分解的空间特征差异性和适用范围。结果表明:在植被覆盖较低、地表温度较高的中心城区,SUTM模型的地表温度分解效果更佳,最小均方根误差和平均绝对误差分别为1.522 K和1.191 K;在植被覆盖较高、地表温度较低的郊区,E-Dis Trad模型的地表温度分解效果更好,最小均方根误差和平均绝对误差分别为1.768 K和1.173 K。2种模型都能有效地提高地表温度的空间分辨率,但是在植被覆盖不同的地区分解结果呈现一定的差异性。  相似文献   

11.
The goal of this study was to evaluate whether harmonic regression coefficients derived using all available cloud-free observations in a given Landsat pixel for a three-year period can be used to estimate tree canopy cover (TCC), and whether models developed using harmonic regression coefficients as predictor variables are better than models developed using median composite predictor variables, the previous operational standard for the National Land Cover Database (NLCD). The two study areas in the conterminous USA were as follows: West (Oregon), bounded by Landsat Worldwide Reference System 2 (WRS-2) paths/rows 43/30, 44/30, and 45/30; and South (Georgia/South Carolina), bounded by WRS-2 paths/rows 16/37, 17/37, and 18/37. Plot-specific tree canopy cover (the response variable) was collected by experienced interpreters using a dot grid overlaid on 1 m spatial resolution National Agricultural Imagery Program (NAIP) images at two different times per region, circa 2010 and circa 2014. Random forest model comparisons (using 500 independent model runs for each comparison) revealed the following (1) harmonic regression coefficients (one harmonic) are better predictors for every time/region of TCC than median composite focal means and standard deviations (across times/regions, mean increase in pseudo R2 of 6.7% and mean decrease in RMSE of 1.7% TCC) and (2) harmonic regression coefficients (one harmonic, from NDVI, SWIR1, and SWIR2), when added to the full suite of median composite and terrain variables used for the NLCD 2011 product, improve the quality of TCC models for every time/region (mean increase in pseudo R2 of 3.6% and mean decrease in RMSE of 1.0% TCC). The harmonic regression NDVI constant was always one of the top four most important predictors across times/regions, and is more correlated with TCC than the NDVI median composite focal mean. Eigen analysis revealed that there is little to no additional information in the full suite of predictor variables (47 bands) when compared to the harmonic regression coefficients alone (using NDVI, SWIR1, and SWIR2; 9 bands), a finding echoed by both model fit statistics and the resulting maps. We conclude that harmonic regression coefficients derived from Landsat (or, by extension, other comparable earth resource satellite data) can be used to map TCC, either alone or in combination with other TCC-related variables.  相似文献   

12.
Landsat 8数据地表温度反演算法对比   总被引:12,自引:0,他引:12  
随着卫星遥感技术的发展,利用遥感反演地表温度的方法不断出现,如劈窗法、双角度法和单通道算法等。Landsat系列卫星的遥感数据是地表温度反演的重要数据之一。本文选择无锡周边区域为研究区,利用Landsat 8卫星遥感数据,对两种劈窗算法(Juan C.Jiménez-Muoz劈窗算法和Offer Rozenstein劈窗算法)和两种单窗算法(Juan C.Jiménez-Muoz单通道算法和覃志豪单窗算法)的地表温度反演精度进行了对比和敏感性分析。采用太湖16个浮标站的实测数据来验证了4种算法的反演精度。结果表明:两种劈窗算法的精度较高且较为接近,误差为0.7 K左右;覃志豪单窗算法和Juan C.Jiménez-Muoz单通道算法精度较低,误差分别为1.3 K和1.4 K左右。Juan C.Jiménez-Muoz劈窗算法对参数的敏感性最低,Juan C.Jiménez-Muoz单通道算法次之,覃志豪单窗算法和Offer Rozenstein劈窗算法敏感性相对最高。其中Juan C.Jiménez-Muoz单通道算法只适用于一定的水汽含量范围,有一定的局限性。  相似文献   

13.
With the availability of high frequent satellite data, crop phenology could be accurately mapped using time-series remote sensing data. Vegetation index time-series data derived from AVHRR, MODIS, and SPOT-VEGETATION images usually have coarse spatial resolution. Mapping crop phenology parameters using higher spatial resolution images (e.g., Landsat TM-like) is unprecedented. Recently launched HJ-1 A/B CCD sensors boarded on China Environment Satellite provided a feasible and ideal data source for the construction of high spatio-temporal resolution vegetation index time-series. This paper presented a comprehensive method to construct NDVI time-series dataset derived from HJ-1 A/B CCD and demonstrated its application in cropland areas. The procedures of time-series data construction included image preprocessing, signal filtering, and interpolation for daily NDVI images then the NDVI time-series could present a smooth and complete phenological cycle. To demonstrate its application, TIMESAT program was employed to extract phenology parameters of crop lands located in Guanzhong Plain, China. The small-scale test showed that the crop season start/end derived from HJ-1 A/B NDVI time-series was comparable with local agro-metrological observation. The methodology for reconstructing time-series remote sensing data had been proved feasible, though forgoing researches will improve this a lot in mapping crop phenology. Last but not least, further studies should be focused on field-data collection, smoothing method and phenology definitions using time-series remote sensing data.  相似文献   

14.
The underground railway network of Beijing City, China, which is an important urban infrastructure, has burgeoned with the expansion of the city. However, the influence of subway construction and operation on local subsidence has received minimal attention. By analyzing the Radarsat-2 synthetic aperture radar satellite data, and using persistent scatterer interferometry, we revealed the land subsidence characteristics along the Beijing Subway Line 6. In the context of land subsidence, the expectation (Ex) reflects the overall level of local land subsidence while the entropy (En) reflects the degree of nonuniformity of local land subsidence in time and space. By comparing the changes in Ex and En, we estimated the spatial range of the influence of the subway on local land subsidence. The influenced area was mainly located between 60 m north of the subway line and 80 m south of the subway line. Land subsidence was most strongly altered during subway construction. During operation of the subway, the deformation rates along the subway increased slightly in the first two years and were then stabilized.  相似文献   

15.
针对现有的遥感影像厚云阴影监测方法存在过程复杂、精度不高等问题,该文提出一种TM影像厚云阴影检测方法:通过阈值分割提取影像中的所有阴影;对比一幅近时相的无云影像,分离出厚云的阴影,即云阴影为"有云"影像比"无云"影像多出的阴影;最后将提取结果与人机交互、云阴影增强模型法提取的结果进行对比分析。实验结果表明该方法提取精度较高,可以快速、准确地提取TM影像中的厚云阴影。  相似文献   

16.
Metropolitan Beijing is facing many environmental problems such as haze and urban heat island due to the rapid urbanization. Surface shortwave, longwave, and net radiations are key components of the surface-atmosphere radiation budget. Since megacities are affected by the thermal radiation of complex landscape structures and atmospheric environments, quantitative and spatially explicit retrieval from remotely sensed data remains a challenge. We collected the surface radiation fluxes from seven fixed sites representing different land-use types to calibrate the local parameters for remotely sensed retrieval of net radiation. We proposed a remote sensing–based surface radiation retrieval method by embedding the underlying land covers and integrating the observational data. The improved method is feasible to accurately retrieve surface radiation and delineate spatial characteristics in metropolitan areas. The accuracy evaluation indicated that the difference between remotely sensed and in situ observed net radiation ranged within 0~± 40 W· m?2. The root mean squared error of the estimated net surface radiation was 32.71 W· m?2. The strongly spatial heterogeneity of surface radiation components in metropolitan Beijing was closely related to land-cover patterns from urban area to outskirts. We also found that the surface net radiation had a decreasing trend from 1984 to 2014, and the net radiation in the urban area was lower than that in the outskirts. According to the surface radiation budgets, urbanization resulted in the cooling effect in net radiation flux in the daytime, which was stemmed from low atmospheric transmittances from massive aerosol concentration and high surface albedo from light building materials.  相似文献   

17.
This study presents an approach for chlorophyll content determination of small shallow water bodies (kettle holes) from hyperspectral airborne ROSIS and HyMap data (acquired on 15 May and 29 July 2008 respectively). Investigated field and airborne spectra for almost all kettle holes do not correspond to each other due to differences in ground sampling distance. Field spectra were collected from the height of 30–35 cm (i.e. area of 0.01–0.015 m2). Airborne pixels of ROSIS and HyMap imageries cover an area of 4 m2 and 16 m2 respectively and their spectra are highly influenced by algae or bottom properties of the kettle holes. Analysis of airborne spectra revealed that chlorophyll absorption near 677 nm is the same for both datasets. In order to enhance absorption properties, both airborne hyperspectral datasets were normalized by the continuum removal approach. Linear regression algorithms for ROSIS and HyMap datasets were derived using normalized average chlorophyll absorption spectra for each kettle hole. Overall accuracy of biomass mapping for ROSIS data was 71%, and for HyMap 64%. Biomass mapping results showed that, depending on the type of kettle hole, algae distribution, the ‘packaging effect’ and bottom reflection lead to miscalculations of the chlorophyll content using hyperspectral airborne data.  相似文献   

18.
In this study, we assessed land cover land use (LCLU) changes and their potential environmental drivers (i.e., precipitation, temperature) in five countries in Eastern & Southern (E&S) Africa (Rwanda, Botswana, Tanzania, Malawi and Namibia) between 2000 and 2010. Landsat-derived LCLU products developed by the Regional Centre for Mapping of Resources for Development (RCMRD) through the SERVIR (Spanish for “to serve”) program, a joint initiative of NASA and USAID, and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to evaluate and quantify the LCLU changes in these five countries. Given that the original development of the MODIS land cover type standard products included limited training sites in Africa, we performed a two-level verification/validation of the MODIS land cover product in these five countries. Precipitation data from CHIRPS dataset were used to evaluate and quantify the precipitation changes in these countries and see if it was a significant driver behind some of these LCLU changes. MODIS Land Surface Temperature (LST) data were also used to see if temperature was a main driver too.Our validation analysis revealed that the overall accuracies of the regional MODIS LCLU product for this African region alone were lower than that of the global MODIS LCLU product overall accuracy (63–66% vs. 75%). However, for countries with uniform or homogenous land cover, the overall accuracy was much higher than the global accuracy and as high as 87% and 78% for Botswana and Namibia, respectively. In addition, the wetland and grassland classes had the highest user’s accuracies in most of the countries (89%–99%), which are the ones with the highest number of MODIS land cover classification algorithm training sites.Our LCLU change analysis revealed that Botswana’s most significant changes were the net reforestation, net grass loss and net wetland expansion. For Rwanda, although there have been significant forest, grass and crop expansions in some areas, there also have been significant forest, grass and crop loss in other areas that resulted in very minimal net changes. As for Tanzania, its most significant changes were the net deforestation and net crop expansion. Malawi’s most significant changes were the net deforestation, net crop expansion, net grass expansion and net wetland loss. Finally, Namibia’s most significant changes were the net deforestation and net grass expansion.The only noticeable environmental driver was in Malawi, which had a significant net wetland loss and could be due to the fact that it was the only country that had a reduction in total precipitation between the periods when the LCLU maps were developed. Not only that, but Malawi also happened to have a slight increase in temperature, which would cause more evaporation and net decrease in wetlands if the precipitation didn’t increase as was the case in that country. In addition, within our studied countries, forestland expansion and loss as well as crop expansion and loss were happening in the same country almost equally in some cases. All of that implies that non-environmental factors, such as socioeconomics and governmental policies, could have been the main drivers of these LCLU changes in many of these countries in E&S Africa. It will be important to further study in the future the detailed effects of such drivers on these LCLU changes in this part of the world.  相似文献   

19.
Radiometric correction is a prerequisite for generating high-quality scientific data, making it possible to discriminate between product artefacts and real changes in Earth processes as well as accurately produce land cover maps and detect changes. This work contributes to the automatic generation of surface reflectance products for Landsat satellite series. Surface reflectances are generated by a new approach developed from a previous simplified radiometric (atmospheric + topographic) correction model. The proposed model keeps the core of the old model (incidence angles and cast-shadows through a digital elevation model [DEM], Earth–Sun distance, etc.) and adds new characteristics to enhance and automatize ground reflectance retrieval. The new model includes the following new features: (1) A fitting model based on reference values from pseudoinvariant areas that have been automatically extracted from existing reflectance products (Terra MODIS MOD09GA) that were selected also automatically by applying quality criteria that include a geostatistical pattern model. This guarantees the consistency of the internal and external series, making it unnecessary to provide extra atmospheric data for the acquisition date and time, dark objects or dense vegetation. (2) A spatial model for atmospheric optical depth that uses detailed DEM and MODTRAN simulations. (3) It is designed so that large time-series of images can be processed automatically to produce consistent Landsat surface reflectance time-series. (4) The approach can handle most images, acquired now or in the past, regardless of the processing system, with the exception of those with extremely high cloud coverage. The new methodology has been successfully applied to a series of near 300 images of the same area including MSS, TM and ETM+ imagery as well as to different formats and processing systems (LPGS and NLAPS from the USGS; CEOS from ESA) for different degrees of cloud coverage (up to 60%) and SLC-off. Reflectance products have been validated with some example applications: time series robustness (for a pixel in a pseudoinvariant area, deviations are only 1.04% on average along the series), spectral signatures generation (visually coherent with the MODIS ones, but more similar between dates), and classification (up to 4 percent points better than those obtained with the original manual method or the CDR products). In conclusion, this new approach, that could also be applied to other sensors with similar band configurations, offers a fully automatic and reasonably good procedure for the new era of long time-series of spatially detailed global remote sensing data.  相似文献   

20.
Surface fires are common in coalfields where coal is mined or exposed to sunlight for long durations of time. The heat energy emitted from these fires affects the signal recorded by sensors operating in the shortwave infrared regions of the electromagnetic spectrum. The Landsat TM/ETM+ band-7 is sensitive to solar reflected radiation as well as emitted radiation from a target. The ‘maximum solar reflection threshold’ method proposed in this study uses the highest spectral radiance that can be attributed to solar reflection as the conservative threshold to segregate the pixels with emitted component from those with reflected component of the EM energy. Investigations with Landsat TM/ETM+ data indicate a reflectance value of 0.23–0.25 as the most representative highest reflectance (threshold) in coal mining areas. The method apparently has the advantage that it is based on the reflectance characteristics of materials (sandstone-shale mixtures) typically found in coal mining areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号