首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Representative samples of crude oils from Cusiana, Cupiagua, Apiay, Castilla and Chichimene fields in the Eastern Llanos Basin of Colombia were analyzed to determine its compound-specific stable carbon isotope composition (CSIA) using gas chromatography–isotopic ratio–mass spectrometry (GC–IRMS). GC–IRMS analyses of n-alkanes allowed differentiating between Cretaceous and Cretaceous/Tertiary oil samples. Cretaceous sourced samples have δ13C-enriched values than Cretaceous/Tertiary sourced samples; the heavier isotope composition of these samples is due to their major terrigenous organic matter input. Their isotope distribution patterns suggest significant algal and/or bacterial contribution (marine origin). The analysis of the n-alkane fractions by GC–IRMS confirms that the organic matter has marine origin in those samples from Cusiana, Cupiagua and Apiay while Castilla and Chichimene have marine origin with terrestrial inputs. The results were confirmed by gas chromatography/FID and gas chromatography/mass spectrometry (GC/MS). Basic geochemical composition show that samples from Cupiagua/Cusiana fields and Apiay/Castilla/Chichimene fields in the Llanos basin, Colombia present different characteristics reflecting a specific for each depositional environment.  相似文献   

2.
Pyrolysis–GC–MS was recently proposed as an emerging technique for establishing biogenicity of 3.5 Gyr old insoluble organic matter in cherts (Derenne et al., 2008. Earth and Planetary Science Letters 272, 476–480). When applied to four kerogens isolated from Archean chert samples for biogenicity determination, this method highlights the importance of having a significant aliphatic component remaining in the kerogen. If not, fatty acid decarboxylation may bias the n-alkane distribution. However, in most cases, mature samples such as Archean cherts usually do not have such an aliphatic fraction. This shows the limits of the technique and the need for a new biogenicity marker.  相似文献   

3.
邱振  王清晨 《地质科学》2011,46(1):52-67
通过对桂西地区南丹龙王坡11件上二叠统硅质岩样品和平果四塘6件上二叠统硅质岩样品的主量和微量元素分析研究,并结合已发表的崇左东攀部面大隆组的硅质岩地球化学数据,认为桂西地区上二叠统硅质岩为生物成因,形成于受陆源碎屑影响的大陆边缘沉积环境,其沉积水体为氧化条件.研究区内硅质岩的TOC为0.10%~0.19%,平均为0.1...  相似文献   

4.
Trace elements and rare earth elements (REEs) of Lias-aged cherts in the Gumushane area were studied in order to understand their origin and depositional environment. Twenty three chert samples from five stratigraphic sections were analysed by inductively coupled plasma-mass spectrometry, X-ray diffraction, and mineralogical investigation. Lias cherts in the study area are microcrystalline, cryptocrystalline quartz, and megaquartz depending on mineralogical content. Trace elements of the cherts were compared with PAAS, Co, Y, and Th had stronger depletions in the five sections, whereas V, Ni, Zr, Nb, and Hf had smaller depletions. The distribution of Zr, Hf, and Ta yields Zr/Hf, Zr/Ta and Hf/Ta ratios (25/645, 37/665, and 0.18/3, respectively) that differ from those of chondrites and average upper continental crust, suggesting that these elements are likely non-detrital but are sourced from seawater. Th/U ratios range from 0.04 to 0.45 and are lower than those of the upper continental crust (average: 3.9). Lias-aged cherts have low total REE abundances and stronger depletions in five sections of the PAAS and chondrite-normalised plots. The cherts are characterised by a positive Eu anomaly (average: 4.9) and LREE-enrichment (LaN/YbN = average: 3.5). In addition, about one-half of the cherts exhibit positive Ce anomaly (range: 0.25–2.58), chondritic Y/Ho values (range: 3.3–60), and low (La/Ce)N values (average: 1.8). REE and trace element abundance in Lias cherts indicate that these elements were likely derived from hydrothermal solutions, terrigenous sources, and seawater. The REE patterns of the cherts show that they were probably deposited close to a continental margin.  相似文献   

5.
The Ediacaran to early Cambrian Blovice accretionary complex, Bohemian Massif, hosts abundant chert bodies that formed on an oceanic plate and were involved in subduction beneath the northern margin of Gondwana. Field relationships of cherts to their host, their microstructure and elemental as well as isotopic compositions revealed diverse processes of chert petrogenesis reflecting depositional environment and position on the oceanic plate. The deep-water cherts formed through a hydrothermal precipitation of silica-rich gels on outer trench swell of the subducted slab with none or only minor addition of terrigenous material. On the contrary, the shallow-water cherts formed in lagoons on seamount slopes, and at least some of them represent a product of hydrothermal replacement of former carbonate and/or evaporite precursors. For both chert types, the hydrothermal fluids were of low temperature and continuous pervasive hydrothermal alteration of oceanic crust, together with an elevated Si content in Neoproterozoic seawater, served as the major source of silica. On the other hand, minor carbon enrichment in chert is mostly linked to variable incorporation of organic matter that was deposited on the seafloor. Rare earth element (REE) systematics of the cherts indicate predominantly oxygenated environment for the shallow-water cherts whereas the deep-water cherts were deposited in diverse redox conditions, depending on their distance from hydrothermal vent. Using these data, we demonstrate that the cherts once formed a part of Ocean Plate Stratigraphy (OPS) now dismembered and mixed with terrigenous siliciclastic material to form OPS mélanges. Combining our data with those from the existing literature, we show that cherts can serve as significant markers of OPS since the Archean, recording a complex interplay between seafloor-related volcanic (production of MORB- and OIB-like magmas) and sedimentary processes, hydrothermal activity at mid-ocean ridges and seamount chains as well as at outer slopes of subducting slabs. However, the cherts also exhibit a secular change in composition and petrogenesis most profoundly affected by an overturn in seawater silica cycle across the Precambrian–Phanerozoic boundary.  相似文献   

6.
Precambrian cherts from the Fig Tree and Onverwacht groups of South Africa contain unusually high concentrations of chromium and nickel. The organic carbon content of these cherts (0.02–1.58%) shows a considerable variation with a maximum abundance in the Onverwacht group. Atomic H/C ratios (0.08–1.38) of the associated organic matter (kerogen) support the suggestion that the carbon isotopic values of kerogen have not been isotopically enriched by metamorphic processes. Chemically bound alipathic structures amount to about 10% by weight of the organic carbon content of a chert from the lowermost Theespruit succession.  相似文献   

7.
In the Upper Cretaceous sequence of the Negev (southern Israel) the organic matter in phosphorites and cherts differs from that associated with oil shales in its higher content of humic substances and lower kerogen content, and in its more intensive microbial alteration. The n-alkane distribution pattern of the oil shales, phosphorites and cherts indicates that marine biota, probably algae, are the main organic precursors of their organic matter. In some of the oil shales, however, some contribution of terrestrial organic matter is also evident. Similar high phytane/pristane ratios indicate that the organic matter in the oil shales as well as in the phosphorites and cherts accumulated under reducing conditions. The main differences in the organic matter composition are attributed to early diagenetic processes rather than to different biotic precursors or to late modifications due to temperature-induced maturation. The depositional model suggested for the sequence involves upwelling conditions at the boundary between the deep Tethys and the shallow shelf, which induced high organic productivity deep into the inner shelf. Bottom water circulation enabled intensive microbial alteration of the organic matter, followed by a winnowing process leading to phosphorite formation. Since humification is considered an oxygen-consuming reaction, these processes favoured the formation of oxygen-enriched humic substances and the oxidation of humic substances already present. These humic substances are relatively resistant to further alteration and their conversion into kerogen is thus retarded. Subsequently, syndepositional tectonic activity resulted in the introduction of less saline water, restriction of bottom-water circulation and the establishment of a density stratification in the water body. Consequently, aeration of the bottom layer and the sediments was inhibited, microbial alteration was reduced and later winnowing processes were prevented. Such conditions favoured the formation of kerogen directly, rather than through humic substances, and also favoured the preservation of most of the organic matter in the form of oil shale deposits instead of phosphorites.  相似文献   

8.
The Utrillas coal facies are located in the Maestrazgo basin in NE Spain. This mining district of Teruel contains sub-bituminous deposits from the Middle Albian (Lower Cretaceous 105 Ma) in areas near a delta estuary with abundant sulphur. The high sulphur content is due to an influx of sulphate caused by the geological recycling of Triassic gypsum from the catchment area into the delta estuary. In some outcrops, the weathered coal reveals leonardite deposits. The depositional environment of the basin originated coals, some of which are currently mined. The organic matter of the coals has been the object of scattered reports. Studies have focused on bulk pyrolysis parameters and microscopic observation in Utrillas samples, as well as the inorganic and insoluble organic fraction.We analysed the organic soluble extract of the Utrillas coals using GC–MS in order to characterize their aliphatic, aromatic and organosulphur compounds. The biomarker distribution allowed us to recognize different inputs, assess their depositional palaeoenvironment and finally determine their degree of maturity. In particular, homologous series of hopanes related to eubacteria were present. Biomarkers characteristic of higher plant inputs were also widely distributed (e.g. phyllocladane or C29 steranes). The presence of linear alkylbenzenes allowed us to recognize the palaeodepositional reducing environments where they were deposited. Specifically, thienylhopanes were associated with sulphur-reducing environments. Finally, the abundance of unsaturated biomarkers such as diacholestenes indicated low-maturity coals. Various aromatic ratios such as the methylphenanthrene index also suggested diagenesis in the initial stage.  相似文献   

9.
The study area is the southern depocenter (depth > 4200 m) of the Mesohellenic Basin which extends between Kipourio and Grevena, central Greece. The Mesohellenic Basin is a Middle-Tertiary intramontane basin developed within the Hellenide orogen. Previous studies have focused on the depositional environments, configuration and hydrocarbon potential of the basin. In this paper we present additional geochemical and petrographic data from outcrop samples of the basin's southern depocenter, which is considered the most promising area, in terms of hydrocarbon prospectivity. A total number of thirty six samples were analysed: Rock-Eval pyrolysis, maceral analysis, vitrinite reflectance and thermal alteration index, bitumens extraction, liquid chromatography, and GC-MS. The samples were collected from deltaic deposits and submarine fan sediments of Late Eocene to Late Oligocene age. The TOC values of the analysed samples range between rich and very rich and the organic matter consists mainly of type III kerogen and the organic matter consider to be predominately gas prone. The thermal maturity assessed from Tmax and vitrinite reflectance shows an immature stage of the organic matter along with the presence of layers having reached the very early mature stage. Vitrinite reflectance measurements and maturity calculations (applying the Lopatin modeling), reveal that the lower part of the depocenter sediments falls within the ‘oil window’. The extractable organic matter (EOM) (mg bitumens/g TOC) indicate the existence of samples (from deltaic deposits) with high ratio of transformation (EOM) (> 100 mg bitumen/g TOC). The GC and GC-MS analyses of the biomarkers indicate mainly the occurrence of terrestrial organic matter reflecting oxidizing conditions and both immature and very early mature stages. The results of the Rock-Eval pyrolysis and the distribution of the isoprenoids support the assumption of the input of an organic matter mixture.  相似文献   

10.
Organic geochemical evaluation of thirty-two Aptian to Campanian shale samples from seven wells drilled on the shelf of the Orange Basin (southwestern Atlantic margin) was carried out in order to determine their origin, depositional environment, thermal maturity and hydrocarbon potential. The shale samples, selected to represent highstand, lowstand and transgressive systems tracts, were analysed by Rock–Eval pyrolysis for total organic C characteristics and by gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS) for n-alkanes, aliphatic isoprenoid hydrocarbons and biomarkers (steranes, hopanes and tricylic terpanes). For most of the shale samples Rock–Eval data, hydrogen (HI) and oxygen index (OI) point to mainly Type III terrigenous organic matter. Only a few samples of Turonian age reveal a higher proportion of marine organic matter being classified as Type II/III or Type II. Biomarker parameters suggest that the samples are deposited under suboxic to oxic environmental conditions. Rock–Eval data and biomarker maturity parameters assign for most of the samples a maturity level at the beginning of the oil window with some more mature samples of Aptian, Albian and Cenomanian age. The hydrocarbon generation potential is low for most of the shelf shales as indicated by the S2/S3 ratio and HI values. Exceptions are some samples of Turonian and Aptian age.  相似文献   

11.
Variations in the sedimentary organic matter were documented throughout the Agua de la Mula Member (late Hauterivian) of the Agrio Formation, at a combined section in the type area of the Agrio Formation; the base at Agrio del Medio and the middle to top at Bajada del Agrio. A main organic-rich interval was identified in the basal Agua de la Mula Member, dominated by marine-derived Amorphous Organic Matter (AOM), coinciding with the highest Total Organic Carbon (TOC) content, between 1.4 and 3.8 wt.%, suggesting dysoxic conditions. The rest of the Member is predominantly characterized by terrestrially-derived organic matter, mainly phytoclasts, with low TOC values, around 1% or lower, indicating predominantly oxic depositional settings. By integrating stacking pattern and shell beds analysis, four depositional sequences SQ1–SQ4 were recognized. The organic-rich, finely laminated bituminous black shales of the Spitidiscus riccardii zone constitute a mayor and rapid inundation defining a Transgressive System tract (TST), related to a third order asymmetrical mesosequence dominated by a thick High System Tract (HST). It represents the most widespread and important flooding episode within the Neuquén Basin during the late Hauterivian. Inside sequences of higher frequency (SQ1, SQ2, SQ3, SQ4) of probably fourth order were recognized and analysed including several ammonids zones (Spitidiscus riccardii, Crioceratites schlagintweiti, C. diamantensis and Paraspiticeras groeberi). With the exception of the oxygen-controlled, basinal and outer ramp settings indicated for the TST1, which is equivalent to the TST of a lower order sequence, and the lower TST2, respectively, the prevalence of well oxygenated, inner to middle ramp depositional environments, is suggested for the rest of the sedimentary succession and emphasized in HST of SQ2, SQ3 and SQ4. Thus, a shallowing-upward trend with improved oxygenation is recorded through the Agua de la Mula Member, reflected by decreasing TOC, AOM content and preservation state of the organic matter. Based on the whole rock fluorescence analysis of the two selected organic-rich intervals from the Spitidiscus riccardii and the lowermost Crioceratites diamantensis zones, the presence of hydrocarbons suggests a very early in situ generation.  相似文献   

12.
Organic molecules originating only from the in situ diagenesis of biogenic molecules are ideal geochemical fossils which may provide information essential for the characterization and reconstruction of depositional environments and subsequent chemical reactions during diagenesis. It is proposed herein that this is the case for the 5β-isomers of stanols and stanones produced during stenol hydrogenation in young aquatic sediments, if shown to be essentially free of any major anthropogenic pollution (particularly, sewage). In order to clarify the environmental factors controlling the production of the 5β-steroidal isomers from stenols in recent aquatic sediments, attempts were made to relate the occurrence of 5β-stanols to various environmental parameters. Positive correlations between elevated concentrations of 5β-stanols and the degree of autochthonous contribution to sedimentary organic matter were consistently found in various surface aquatic sediments from a wide variety of depositional environments and also in older sediments extending even to the late Pleistocene. According to this finding, it was concluded that the primary factor controlling the conversion of stenols to 5β-stanols through 5β-stanones in anaerobic aquatic sediments is probably the relative contribution of autochthonous organic matter suitable for microbial metabolism (i.e. metabolizable organic matter) to the sediments. Consequently, it is proposed that the 5β-isomers of stanols and stanones, at least in immature aquatic (marine and non-marine) sediments, can serve as primary markers for defining the quality of sedimentary organic matter (viz. the relative contribution of metabolizable organic materials to sedimentary organic matter) and as indicators for the types and rates of microbiological activities responsible for early diagenesis of organic matter in anaerobic sediments. It is also suggested that the combination of the 5β-steroidal isomers with organic source parameters will allow these compounds to assist in indicating oxic or anoxic depositional environments.  相似文献   

13.
Seventy-two core and cutting samples of the Ratawi Formation from selected wells of central and southern Iraq in Mesopotamian Foredeep Basin are analysed for their sedimentary organic matters. Dinoflagellates, spores and pollen are extracted by palynological techniques from these rocks. Accordingly, Hauterivian and late Valanginian ages are suggested for their span of depositional time. These palynomorphs with other organic matter constituents, such as foraminifer’s linings, bacteria and fungi, are used to delineate three palynofacies types that explain organic matter accumulation sites and their ability to generate hydrocarbons. Palaeoenvironments of these sites were mainly suboxic to anoxic with deposition of inshore and neritic marine environments especially for palynofacies type 2. Total organic matters of up to 1.75 total organic carbon (TOC) wt.% and early mature stage of up to 3.7 TAI based on the brown colour of the spore species Cyathidites australis and Gleichenidites senonicus with mottled interconnected amorphous organic matter are used for hydrocarbon generation assessment from this formation. On the other hand, these rock samples are processed with Rock-Eval pyrolysis. Outcomes and data calculations of these analyses are plotted on diagrams of kerogen types and hydrocarbon potential. Theses organic matter have reached the mature stage of up to T max?=?438 °C, hydrogen index of up to 600 mg hydrocarbons for each gram of TOC wt.% and mainly low TOC (0.50–1.55). Accordingly, this formation could generate fair quantities of hydrocarbons in Baghdad oil field and Basrah oil fields. Organic matters of this formation in the fields of Euphrates subzone extends from Hilla to Nasiriyah cities have not reached mature stage and hence not generated hydrocarbons from the Ratawi Formation. Software 1D PetroMod basin modelling of the Ratawi Formation has confirmed this approach of hydrocarbon generation with 100 % transformations of the intended organic matters to generate hydrocarbons to oil are performed in especially oil fields of East Baghdad, West Qurna and Majnoon while oil fields Ratawi and Subba had performed 80–95 % transformation to oil and hence end oil generation had charged partly the Tertiary traps that formed during the Alpine Orogeny. Oil fields of Nasiriyah and Kifle had performed least transformation ratio of about 10–20 % transformation to oil, and hence, most of the present oil in this field is migrated from eastern side of the Mesopotamian Foredeep Basin that hold higher maturation level.  相似文献   

14.
Elemental and organic geochemical studies have been carried out on the Gondwana sediments, collected from the outcrops of Permian and Jurassic–Cretaceous rocks in the Krishna–Godavari basin on the eastern coast of India, to understand their paleo and depositional environment and its implications for hydrocarbon generation in the basin. Amongst the studied formations, the Raghavapuram, Gollapalli and Tirupati form a dominant Cretaceous Petroleum System in the west of the basin. Raghavapuram shales and its stratigraphic equivalents are the source rock and Gollapalli and Tirupati sandstones form the reservoirs, along with basaltic Razole formation as the caprock. Major element systematics and X-ray diffraction study of the sandstones indicate them to be variably enriched with SiO2 relative to Al2O3 and CaO, which is associated, inherently with the deposition and diagenesis of the Gondwana sediments. Post-Archean Average Shale normalized rare earth elements in shales show enrichment in most of the samples due to the increasing clay mineral and organic matter assemblage. A negative europium and cerium anomaly is exhibited by the REE's in majority of rocks. Composed primarily of quartz grains and silica cement, the Gollapalli and Tirupati sandstones have characteristics of high quality reservoirs. The shales show a significant increase in the concentration of redox sensitive trace elements, Ni, V, Cr, Ba and Zn. The total organic carbon content of the shales ranges between 0.1 and 0.5 wt%. Programmed pyrolysis of selected samples show the Tmax values to range between 352–497 °C and that of hydrogen index to be between 57–460 mgHC/gTOC. The organic matter is characterized by, mainly, gas prone Type III kerogen. The n-alkane composition is dominated by n-C11–C18 and acyclic isoprenoid, phytane. The aromatic fraction shows the presence of naphthalene, anthracene, phenanthrene, chrysene and their derivatives, resulting largely from the diagenetic alteration of precursor terpenoids. The organic geochemical proxies indicate the input of organic matter from near-shore terrestrial sources and its deposition in strongly reducing, low oxygen conditions. The organic matter richness and maturity derived from a favorable depositional setting has its bearing upon the Gondwana sediments globally, and also provides promising exploration opportunities, particularly in the Raghavapuram sequence of the KG basin.  相似文献   

15.
Coal samples and the associated sediments from New Majri open cast mine have been analysed palynologically with the following objectives: to date the sediments on the basis of the palyno-assemblage recognised; to carry out an inter-basinal, intra-basinal and Gondwana wide correlation; to interpret the palaeoenvironment and depositional facet of the coal field on the basis of dispersed organic matter analysis and sedimentary facies analysis. Based on the qualitative and quantitative analysis of the spore and pollen content one palyno-assemblage-Scheuringipollenites and Faunipollenites has been recognised which is typical of lower Barakar Formation. This has been correlated with known palyno-assemblages from Wardha basin and other basins in India, while with the Gondwana continents the assemblage has been broadly correlated with early Permian Australian, African, South America palynofloras as well as early Permian palynoflora of Antarctica. Consequently, a tentative late Early Permian, Artinskian age is proposed for the sediments from New Majri open cast mine. Palynological studies also revealed that the peat forming vegetation was mainly composed of gymnosperms represented by glossopterids (Scheuringipollenites, Ibisporites, Platysaccus, Cuneatisporites, Primuspollenites and Sahnites), conifers (Faunipollenites, Striatites, Striatopodocarpites, Verticipollenites, Distriatites) and cordaites (Parasaccites, Plicatipollenites, Crucisaccites, Divarisaccus, Densipollenites). Spores were represented mainly by filicopsids (Horriditriletes, Brevitriletes, Callumispora) and sphenopsids (Latosporites). The relative abundance of structured organic matter implies the existence of a fairly dense cover of vegetation in the hinterland. Anaerobic, reducing, water logged peat-forming conditions have been inferred by the presence of biodegraded organic matter and amorphous organic matter. The charcoal fragments recovered from the present study area reflects a possible wildfire in the accumulated swamps or a wildfire in the hinterland after which the sediments were flushed by fluvial systems into the swamps. The coalfield exhibits horizontal bedding pattern which may be due to deposition by suspension settling or horizontal accretion. Further the alternating high and low energy regime is noticed in the sandstone-shale intercalated beds overlying the coarse grained yellow sandstone which forms the roof of the coal seam. Comprehensively the sediments are deposited as overbank / levee deposits.  相似文献   

16.
The study provides the first data on organic matter from Upper Devonian deposits of the Shar’yu River section (Chernyshev Ridge, Northern Urals). Oil shales from the Middle and Middle–Upper Domanik intervals and carbonaceous shales from the Upper Frasnian intervals were analyzed. The biomarker analysis revealed similar characteristics of organic matter from studied samples and Domanik-facies rocks of the Ukhta area. It was also shown that organic matter from the studied Domanik section is characterized by compositional heterogeneity. The biomarker and stable carbon isotope compositions of bitumen extracts, their fractions, and kerogen of the Middle and Middle–Upper Domanik shales are different from those of the Upper Frasnian shale, which may indicate the variation in depositional setting.  相似文献   

17.
The organic rich Safer shales exposed in the north-central part of onshore Marib-Shabowah Basin are evaluated and their depositional environments are interpreted. Total organic carbon contents (TOC) of the shales range from 1.02–16.8 wt%, and yield hydrogen index (HI) values ranging from 130 to 820 mg HC/g TOC, consistent with mainly Type II with minor contributions from Type I and mixed Types II–III kerogens. The Safer shale samples have vitrinite reflectance values in the range of 0.5–1.0 Ro%, indicating early mature to peak mature stage for oil generation. Tmax values range from 429–438 °C, which are in reasonably good agreement with vitrinite reflectance data. Kerogen microscopy shows that the Safer shales are characterized by high amounts of organic matter, consisting predominantly of yellow fluorescing amorphous organic matter and alginite of marine origin. This is supported by their high content of hydrogen rich Type II and I oil-prone kerogen.The biomarker distributions of the Upper Jurassic Safer extracts are characterized by dominant low to medium molecular weight compounds (n-C14 to n-C20), low Pr/Ph ratio (<1.0), high phytane/n-C18 ratios (0.82–2.68), and predominant regular sterane C27. All biomarker parameters clearly indicate that the organic matter was derived from marine algal inputs and deposited under anoxic (reducing) conditions. Hypersaline conditions also prevailed during deposition of these sediments, as indicated by the presence of gammacerane.  相似文献   

18.
Early Silurian cherts from the Holy Cross and Bardzkie Mountains (Poland) contain abundant microfossils morphologically resembling contemporary cyanobacteria. Most of the organic matter preserved in the cherts is highly mature and extensively degraded because of biological decomposition and progressive thermal alteration. These processes may have changed the original morphology of the deposited microbial remains, so the microfossil origin could be easily misinterpreted. The cherts were therefore examined using organic geochemical and stable isotope techniques to provide support for the presence of cyanobacterial remains. The nitrogen isotopic composition of bulk sediments and extractable organic matter ranged from +0.1‰ to ?2.2‰ and from +1.8‰ to ?1.7‰, respectively. The δ15N values are thus in good agreement with a contribution of diazotrophic cyanobacteria for both locations. Biomarkers in the Holy Cross Mts. cherts included mid-chain branched monomethyl alkanes, indicative of a cyanobacterial contribution. However, molecular fossils of a cyanobacterial origin were not detected in the Bardzkie Mts. cherts, most likely because of the greater maturity than those from the Holy Cross Mts.  相似文献   

19.
Trace elements in the kerogen fraction of hydrocarbon source rock samples from two wells obtained from the Cretaceous units of the Orange Basin, South Africa were determined using X-ray fluorescence spectrometry, in order to determine their distribution and geochemical significances. The concentrations of the elements (As, Ce, Co, Cu, Fe, Mo, Ni, Pb and V) determined ranged from 0.64 to 47,300 ppm for the samples analysed. The total organic carbon (TOC) values indicate that the samples are organic rich but did not show any trend with the distribution of the trace metals except Ce, Mo and Pb. Dendrogram cluster analysis discriminated the samples into three groups on the basis of their level of thermal maturity. Thermal maturity has a significant effect on the distribution of the trace metals. Cobalt/Ni and V/Ni ratios and cross plots of the absolute values of V and Ni indicate that the samples had significant marine organic matter input. The V and Ni contents and V/(V + Ni) ratio indicate that the organic matter of the source rocks had been deposited in reducing conditions. Despite the similarities in the organic matter source input and depositional environment of the organic matter of the samples from the two well, cross plots of Co/Ni versus V/Ni and Mo/Ni versus Co/Ni were able to reveal subtle differences. Cluster analysis of the samples was also able to reveal the subtle thermal maturity differences of the samples.  相似文献   

20.
对鄂尔多斯盆地南部瑶科1(YK1)井延长组长7段页岩45件样品进行了总有机碳、Rock-Eval热解分析,并且对其中的15个样品进行了有机碳同位素组成分析、氯仿沥青“A”含量和微量元素分析。结果显示,长7段有机质丰度指标(TOC、氯仿沥青“A”、生烃潜量)之间具有良好的相关性,长73有机质丰度高于长71,长72有机质丰度最低;有机碳同位素指示长73层有机质类型好,以Ⅰ型为主,长72和长71层有机质以Ⅰ和Ⅱ型为主;氧化还原指标U/Th、δU和V/(V+Ni)值指示长7沉积时期水体整体为还原-强还原环境,其中,相比长72和长71的沉积环境,长 73的沉积环境还原性更强,可能达到厌氧、硫化细菌发育的程度。页岩中高P元素含量,指示YK1井长7段页岩沉积时期具有高古生产力特征。有机碳含量(TOC)与氧化还原指标和P元素呈良好的正相关关系,表明有机质含量的变化同时受控于古生产力高低和氧化还原的保存条件。因此,长7段页岩有机质富集模式可能属于“生产力模式”,即长7页岩有机质的富集是由于较高的初始生产力通过消耗水体中的氧气而形成易于保存有机质的缺氧环境。综合前人的页岩气研究成果,认为富有机质的长73层是鄂尔多斯盆地南部页岩气富集的最有利层段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号