首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Prestack depth imaging of seismic data in complex areas such as salt structures requires extensive velocity model updating. In many cases, salt boundaries can be difficult to identify due to lack of seismic reflectivity. Traditional amplitude based segmentation methods do not properly tackle this problem, resulting in extensive manual editing. This paper presents a selection of seismic attributes that can reveal texture differences between the salt diapirs and the surrounding geology as opposed to amplitude‐sensitive attributes that are used in case of well defined boundaries. The approach consists of first extracting selected texture attributes, then using these attributes to train a classifier to estimate the probability that each pixel in the data set belongs to one of the following classes: near‐horizontal layering, highly‐dipping areas and the inside of the salt that appears more like a low amplitude area with small variations in texture. To find the border between the inside of the salt and the highly‐dipping surroundings, the posterior probability of the class salt is input to a graph‐cut algorithm that produces a smooth, continuous border. An in‐line seismic section and a timeslice from a 3D North Sea data set were employed to test the proposed approach. Comparisons between the automatically segmented salt contours and the corresponding contours as provided by an experienced interpreter showed a high degree of similarity.  相似文献   

2.
The accurate interpretation and analysis of seismic data heavily depends on the robustness of the algorithms used. We focus on the robust detection of salt domes from seismic surveys. We discuss a novel feature-ranking classification model for saltdome detection for seismic images using an optimal set of texture attributes. The proposed algorithm overcomes the limitations of existing texture attribute-based techniques, which heavily depend on the relevance of the attributes to the geological nature of salt domes and the number of attributes used for accurate detection. The algorithm combines the attributes from the Gray-Level Co-occurrence Matrix (GLCM), the Gabor filters, and the eigenstructure of the covariance matrix with feature ranking using the information content. The top-ranked attributes are combined to form the optimal feature set, which ensures that the algorithm works well even in the absence of strong reflectors along the salt-dome boundaries. Contrary to existing salt-dome detection techniques, the proposed algorithm is robust and computationally efficient, and works with small-sized feature sets. I used the Netherlands F3 block to evaluate the performance of the proposed algorithm. The experimental results suggest that the proposed workflow based on information theory can detect salt domes with accuracy superior to existing salt-dome detection techniques.  相似文献   

3.
4.
5.
Saltbodies are important subsurface structures that have significant implications for hydrocarbon accumulation and sealing in petroleum reservoirs, and accurate saltbody imaging and delineation is now greatly facilitated with the availability of three-dimensional seismic surveying. However, with the growing demand for larger survey coverage and higher imaging resolution, the size of seismic data is increasing dramatically. Correspondingly, manual saltbody interpretation fails to offer an efficient solution, particularly in exploration areas of complicated salt intrusion history. Recently, artificial intelligence is attracting great attention from geoscientists who desire to utilize the popular machine learning technologies for evolving the interpretational tools capable of mimicking an experienced interpreter's intelligence. This study first implements two popular machine learning tools, the multi-layer perceptron and the convolutional neural network, for delineating seismic saltbodies at sample and pattern levels, respectively, then compares their performance through applications to the synthetic SEAM seismic volume, and moreover tentatively investigates what contributes to the better convolutional neural network delineation. Specifically, the multi-layer perceptron scheme is capable of efficiently utilizing an interpreter's knowledge by selecting, pre-conditioning and integrating a set of seismic attributes that best highlight the target saltbodies, whereas the convolutional neural network scheme makes it possible for saltbody delineation directly from seismic amplitude and thus significantly reduces the dependency on attribute selection from interpreters. It is concluded that the better performance from the convolutional neural network scheme results from two factors. First, the convolutional neural network builds the mapping relationship between the seismic signals and the saltbodies using the original seismic amplitude instead of manually selected seismic attributes, so that the negative impact of using less representative attributes is virtually eliminated. Second and more importantly, the convolutional neural network defines, learns and identifies the saltbodies by utilizing local seismic reflection patterns, so that the seismic noises and processing artefacts of distinct patterns are effectively identified and excluded.  相似文献   

6.
Seismic facies analysis is a well‐established technique in the workflow followed by seismic interpreters. Typically, huge volumes of seismic data are scanned to derive maps of interesting features and find particular patterns, correlating them with the subsurface lithology and the lateral changes in the reservoir. In this paper, we show how seismic facies analysis can be accomplished in an effective and complementary way to the usual one. Our idea is to translate the seismic data in the musical domain through a process called sonification, mainly based on a very accurate time–frequency analysis of the original seismic signals. From these sonified seismic data, we extract several original musical attributes for seismic facies analysis, and we show that they can capture and explain underlying stratigraphic and structural features. Moreover, we introduce a complete workflow for seismic facies analysis starting exclusively from musical attributes, based on state‐of‐the‐art machine learning computational techniques applied to the classification of the aforementioned musical attributes. We apply this workflow to two case studies: a sub‐salt two‐dimensional seismic section and a three‐dimensional seismic cube. Seismic facies analysis through musical attributes proves to be very useful in enhancing the interpretation of complicated structural features and in anticipating the presence of hydrocarbon‐bearing layers.  相似文献   

7.
魏伟  符力耘  蒋韬 《地球物理学报》2009,52(5):1310-1317
三维地震观测系统共聚焦分辨率特性分析突破传统以点论证为基础的观测系统分辨率分析方法,面向地质目标定量预测三维观测系统地震成像的空间分辨率和振幅精度.基于Fourier有限差分(FFD)大步长波场延拓和Born-Kirchhoff小步长波场插值递推方法,本文介绍了一种复杂介质条件下三维地震观测系统共聚焦分辨率特性快速分析方法.对给定的速度模型,该方法能够分析拟采用的三维地震观测系统设计方案对复杂构造的成像分辨率与AVP属性,从而为进一步的偏移成像与储层分析提供保证.最后本文以SEG/EAGE三维盐丘模型为例设计满覆盖为16次的三维地震观测系统,并实施三维共聚焦分辨率特性分析.  相似文献   

8.
We present here a comparison between two statistical methods for facies classifications: Bayesian classification and expectation–maximization method. The classification can be performed using multiple seismic attributes and can be extended from well logs to three‐dimensional volumes. In this work, we propose, for both methods, a sensitivity study to investigate the impact of the choice of seismic attributes used to condition the classification. In the second part, we integrate the facies classification in a Bayesian inversion setting for the estimation of continuous rock properties, such as porosity and lithological fractions, from the same set of seismic attributes. The advantage of the expectation–maximization method is that this algorithm does not require a training dataset, which is instead required in a traditional Bayesian classifier and still provides similar results. We show the application, comparison, and analysis of these methods in a real case study in the North Sea, where eight sedimentological facies have been defined. The facies classification is computed at the well location and compared with the sedimentological profile and then extended to the 3D reservoir model using up to 14 seismic attributes.  相似文献   

9.
地震岩相识别概率表征方法   总被引:4,自引:3,他引:1       下载免费PDF全文
储层岩相分布信息是油藏表征的重要参数,基于地震资料开展储层岩相识别通常具有较强的不确定性.传统方法仅获取唯一确定的岩相分布信息,无法解析反演结果的不确定性,增加了油藏评价的风险.本文引入基于概率统计的多步骤反演方法开展地震岩相识别,通过在其各个环节建立输入与输出参量的统计关系,然后融合各环节概率统计信息构建地震数据与储层岩相的条件概率关系以反演岩相分布概率信息.与传统方法相比,文中方法通过概率统计关系表征了地震岩相识别各个环节中地球物理响应关系的不确定性,并通过融合各环节概率信息实现了不确定性传递的数值模拟,最终反演的岩相概率信息能够客观准确地反映地震岩相识别结果的不确定性,为油藏评价及储层建模提供了重要参考信息.模型数据和实际资料应用验证了方法的有效性.  相似文献   

10.
基于数据增广和CNN的地震随机噪声压制   总被引:2,自引:0,他引:2       下载免费PDF全文
卷积神经网络(Convolutional Neural Network,CNN)是一种基于数据驱动的学习算法,简化了传统从特征提取到分类的两阶段式处理任务,被广泛应用于计算机科学的各个领域.在标注数据不足的地震数据去噪领域,CNN的推广应用受到限制.针对这一问题,本文提出了一种基于数据生成和增广的地震数据CNN去噪框架.对于合成数据,本文对无噪地震数据添加不同方差的高斯噪声,增广后构成训练集,实现基于小样本的CNN训练.对于实际地震数据,由于无法获得真实的干净数据和噪声来生成训练样本集,本文提出一种直接从无标签实际有噪数据生成标签数据集的方法.在所提出的方法中,我们利用目前已有的去噪方法从实际地震数据中分别获得估计干净数据和估计噪声,前者与未知的干净数据具有相似纹理,后者与实际噪声具有相似的概率分布.人工合成数据和实际数据实验结果表明,相较于F-X反褶积,BM3D和自适应频域滤波算法,本文方法能更好地压制随机噪声和保护有效信号.最后,本文采用神经网络可视化方法对去噪CNN的机理进行了探索,一定程度上解释了网络每一层的学习内容.  相似文献   

11.
In this paper, we propose a workflow based on SalSi for the detection and delineation of geological structures such as salt domes. SalSi is a seismic attribute designed based on the modelling of human visual system that detects the salient features and captures the spatial correlation within seismic volumes for delineating seismic structures. Using this attribute we cannot only highlight the neighbouring regions of salt domes to assist a seismic interpreter but also delineate such structures using a region growing method and post‐processing. The proposed delineation workflow detects the salt‐dome boundary with very good precision and accuracy. Experimental results show the effectiveness of the proposed workflow on a real seismic dataset acquired from the North Sea, F3 block. For the subjective evaluation of the results of different salt‐dome delineation algorithms, we have used a reference salt‐dome boundary interpreted by a geophysicist. For the objective evaluation of results, we have used five different metrics based on pixels, shape, and curvedness to establish the effectiveness of the proposed workflow. The proposed workflow is not only fast but also yields better results as compared with other salt‐dome delineation algorithms and shows a promising potential in seismic interpretation.  相似文献   

12.
This paper presents the results of a study undertaken todetermine the seismic hazard of Lebanon. The seismic hazard evaluation wasconducted using probabilistic methods of hazard analysis. Potential sourcesof seismic activities that affect Lebanon were identified and the earthquakerecurrence relationships of these sources were developed from instrumentalseismology data, historical records, and earlier studies undertaken toevaluate the seismic hazard of neighboring countries. The sensitivityof the results to different assumptions regarding the seismic sources in theLebanese segment and choice of the attenuation relationship wasevaluated. Maps of peak ground acceleration contours, based on 10percent of probability of exceedance in 50 years and 100 years time spans,were developed.  相似文献   

13.
Seismic detection of faults, dykes, potholes and iron-rich ultramafic pegmatitic bodies is of great importance to the platinum mining industry, as these structures affect safety and efficiency. The application of conventional seismic attributes (such as instantaneous amplitude, phase and frequency) in the hard-rock environment is more challenging than in soft-rock settings because the geology is often complex, reflections disrupted and the seismic energy strongly scattered. We have developed new seismic attributes that sharpen seismic reflections, enabling additional structural information to be extracted from hard-rock seismic data. The symmetry attribute is based on the invariance of an object with respect to transformations such as rotation and reflection; it is independent of the trace reflection amplitude, and hence a better indicator of the lateral continuity of thin and weak reflections. The reflection-continuity detector attribute is based on the Hilbert transform; it enhances the visibility of the peaks and troughs of the seismic traces, and hence the continuity of weak reflections. We demonstrate the effectiveness of these new seismic attributes by applying them to a legacy 3D seismic data set from the Bushveld Complex in South Africa. These seismic attributes show good detection of deep-seated thin (∼1.5 m thick) platinum ore bodies and their associated complex geological structures (faults, dykes, potholes and iron-rich ultramafic pegmatites). They provide a fast, cost-effective and efficient interpretation tool that, when coupled with horizon-based seismic attributes, can reveal structures not seen in conventional interpretations.  相似文献   

14.
为准确全面地量化分析研究土木工程建筑中混凝土结构抗震稳定性,提出基于滞回曲线以及结构动力方程的混凝土结构抗震稳定性分析方法。首先采用滞回曲线描述混凝土结构在地震作用下的损伤情况,对滞回曲线模型拐点进行有效操作,确保动力方程对混凝土结构抗震稳定性进行有效分析。其次采用基于混凝土结构动力方程的抗震稳定性分析方法,对地震地面运动模型以及结构分析模型来分析混凝土结构的随机地震反应情况,得到混凝土结构随机反应的汇总量,在此基础上通过双参数的结构破坏模型,基于结构稳定性原理,获取运算混凝土结构抗震稳定性的概率表达式,再基于该表达式分析混凝土结构的抗震稳定性情况。实验结果说明,所提方法能够对土木工程建筑中不同类型混凝土构件抗震稳定性进行有效分析,分析结果准确且全面。  相似文献   

15.
The catastrophic nature of seismic risk resides in the fact that a group of structures and infrastructure is simultaneously excited by spatially correlated seismic loads due to an earthquake. For this, both earthquake-to-earthquake (inter-event) and site-to-site (intra-event) correlations associated with ground motion prediction equations must be taken into account in assessing seismic hazard and risk at multiple sites. The consideration of spatial correlation of seismic demand affects aggregate seismic losses as well as identified scenario seismic events. To investigate such effects quantitatively, a simulation-based seismic risk model for spatially distributed structures is employed. Analysis results indicate that adequate treatment of spatial correlation of seismic demand is essential and the probability distribution of aggregate seismic loss can be significantly different from those based on the assumptions that seismic excitations are not correlated or fully correlated. Furthermore, the results suggest that identified scenario events by deaggregation in terms of magnitude and distance become more extreme if the spatial correlation is ignored.  相似文献   

16.
随着油气田开发程度越来越高,勘探难度越来越大,如东部的老油田已经进入开发的后期,如何识别薄层砂体是非常重要的工作之一,解决这些难题这势必需要更先进的技术.地震属性能够很好的反映砂体横向展布特征,但是单一属性无法定量预测砂体厚度,而多属性之间又存在多解性,因此有必要提炼地震属性之间的共同点,将地震属性进行信息融合,形成新的融合属性.针对这一问题,本文提出首先利用高频谐波提高地震数据的分辨率,在此基础上着重研究基于概率核的地震属性融合方法,融合了几种常见的地震属性,并结合波阻抗反演方法,预测了N873区块沙三6-3小层砂体厚度.结果显示该方法能够很好的反映砂体横向展布特征,避免了地震属性多解性问题,为提高砂体预测的精度,提供了新的思路和方法.  相似文献   

17.
Fault and fracture interpretation is a fundamental but essential tool for subsurface structure mapping and modelling from 3D seismic data. The existing methods for semi-automatic/automatic fault picking are primarily based on seismic discontinuity analysis that evaluates the lateral changes in seismic waveform and/or amplitude, which is limited by its low resolution on subtle faults and fractures without apparent vertical displacements in seismic images. This study presents an innovative workflow for computer-aided fault/fracture interpretation based on seismic geometry analysis. First, the seismic curvature and flexure attributes are estimated for highlighting both the major faults and the subtle fractures in a seismic volume. Then, fault probability is estimated from the curvature and flexure volumes for differentiation between the potential faults and non-faulting features in the geometric attributes. Finally, the seeded fault picking is implemented for interpreting the target faults and fractures guided by the knowledge of interpreters to avoid misinterpretation and artefacts in the presence of faulting complexities as well as coherent seismic noises. Applications to two 3D seismic volumes from the Netherlands North Sea and the offshore New Zealand demonstrate the added values of the proposed method in imaging and picking the subtle faults and fractures that are often overlooked in the conventional seismic discontinuity analysis and the following fault-interpretation procedures.  相似文献   

18.
地震属性分析技术在地球物理勘探领域的广泛应用,启发研究人员将其应用于人工源宽角反射/折射深地震测深剖面的资料预处理和震相识别。采用札达-泉水沟深地震测深资料,提取振幅、信噪比、主频、瞬时带宽、瞬时高频能量等地震属性参数,分析不同参数的物理含义,挑选其中对界面变化敏感的参数,对深地震测深资料进行预处理,并利用P波和S波的联合扫描,提高震相识别的准确性。走时互换结果显示,采用地震属性参数可有效提高震相拾取的准确性,进而提高后续地壳速度结构反演结果的精度。  相似文献   

19.
大同阳高震区及其邻区壳幔速度结构与深部构造   总被引:2,自引:1,他引:1       下载免费PDF全文
利用通过本区6条宽角反射/折射剖面资料对大同阳高震区及邻区地壳上地幔速度结构与构造进行了详细的研究。结果表明,地壳上地幔速度结构与构造在纵向和横向上具有明显的不均一性。浅部基底断裂发育,而在其深部,根据波组特征、壳内界面及速度等值线起伏变化和低速异常体的边界等推测有3处地壳深断裂带。本区最明显的上地壳低速体位于大同—阳原附近,其南界存在地壳深断裂,大同阳高地震群与该低速异常体和深断裂有关。  相似文献   

20.
The semi‐automated detection of objects has been quite successful in detecting various types of seismic object, such as chimneys. The same technique can be applied successfully to detect faults in 3D seismic data. We show that several different attributes – among others, similarity, frequency and curvature, all of which potentially enhance the visibility of faults – can be combined successfully by an artificial neural network. This results in a fault ‘probability’ cube in which faults are more continuous and noise is suppressed compared with single‐attribute cubes. It is believed that the fault‐cube can be improved further by applying image‐processing techniques to enhance the fault prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号