首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
四川江油-广元地区上石炭统碳酸盐岩发育良好,厚度不大,化石丰富,含多层紫红色砾屑生物碎屑灰岩和泥岩韵律层,在整个华南同期沉积中颇具特色。根据野外观察和室内显微分析,共识别出15种微相类型。根据这些微相类型在纵向和横向上的组合与分布特点,参考Wilson的标准微相和镶边碳酸盐岩台地沉积模式,利用微相组合分析将这些微相组合划分到4个相带,即蒸发台地、局限台地、开阔台地和台地边缘浅滩。沉积相带的变化特征表明研究区晚石炭世存在着多期海侵-海退旋回,其中在黄龙组上段沉积中期海侵达到最大值,使得川西北大部分地区和川东地区广泛接受碳酸盐岩沉积。江油-广元地区上石炭统特殊岩层的研究表明:黄龙组下部4套红层具有浅海陆棚上部近积风暴岩的特征;船山组核形石灰岩粒序层及其地球化学特征表明核形石的形成可能与晚石炭世晚期全球冰期事件有密切的关系。  相似文献   

2.
In the Getic of the Carpatho-Balcanides (eastern Serbia) and the Tirgan Formation of the Kopet-Dagh Basin (northeast Iran), platform carbonates were deposited during the Barremian/Early Aptian in environments in the domain of the northern Alpine Tethys and deformed during the Alpine orogeny. In this study, Urgonian carbonate platform deposits are discussed in detail with regard to depositional facies, microfacies, biostratigraphy, palaeoenvironments and palaeoecology. Detailed sedimentological and palaeontological investigations have been carried out on five sections in eastern Serbia and three sections in northeast Iran supported by an analysis of 392 thin-sections. Petrographic analysis of thin-sections led to the recognition of eight microfacies types grouped into four facies zones. A supratidal–intertidal (restricted)–intertidal (open-lagoon)–platform-margin sand-shoal transition was recorded in both areas. Supratidal facies are characterized by bioclastic mudstones and fenestral and peloidal wackestones and packstones; intertidal (restricted) facies are represented by bioclastic wackestones, whereas intertidal (open-lagoon) facies are indicated by bioclastic packstones/grainstones and oncoid grainstones. High-energy sand-shoal facies are dominated by ooid grainstones/rudstones followed by orbitolinid packstones. Benthic foraminifera are especially abundant and along with calcareous algae are the most important fossils used for age determination of shallow-marine carbonate deposits. Thirty-two benthic foraminiferal genera were identified from eastern Serbia with an additional 38 genera from northeast Iran dominated by agglutinated forms. Identified calcareous algae provide significant data for depositional environments and palaeoecology. The microfossil associations in the two regions are very similar and share a number of common characteristics, but also some differences and show a strong affinity to those of the northern margins of Tethys. In both study areas shallow-marine environments of the Barremian/Early Aptian were replaced by deep-marine conditions during the Late Cretaceous.  相似文献   

3.
Cross‐bedded grainstones on carbonate ramps and shelves are commonly related to the locus of major wave energy absorption such as shorelines, shoals or shelf breaks. In contrast, on the Early Tortonian carbonate platform of Menorca (Balearic Islands), coarse‐grained, cross‐bedded grainstones are found at a distance from the palaeoshoreline where they were deposited below the wavebase. Excellent exposures along continuous outcrops on the sea cliffs of Menorca reveal the depositional profile and three‐dimensional distribution of the different facies belts of the Tortonian ramp depositional system. Basinward from the palaeoshoreline, fan deltas and beach deposits pass into 5‐km‐wide gently dipping bioturbated dolopackstone (inner and middle ramp), then into 12–20°‐dipping dolograinstone/rudstone clinobeds (ramp slope) and, finally, into subhorizontal fine‐grained basinal dolowackestone to dolopackstone (outer ramp). In this Miocene example, coarse‐grained grainstones exist in five different settings other than beach deposits: (1) on the middle ramp, where cross‐bedded grainstones were deposited by currents roughly parallel to the shoreline at 40–70 m estimated water depth and are interbedded with gently dipping bioturbated dolomitized packstones; (2) on the upper slope, where clinobeds are composed mostly of in situ rhodoliths and red‐algae fragments; (3) on the lower slope, as small‐scale bedforms (small three‐dimensional subaqueous dunes) migrating parallel to the slope; (4) at the transition between the lower slope and the outer ramp, where mollusc‐rich and rhodolithic rudstones and grainstones, interbedded in dolomitized laminated wackestones containing abundant planktonic foraminifera, infill slide/slump scars as upslope‐backstepping bodies (backsets); (5) at the toe of the slope, where coarse skeletal grainstones indicate bedform migration parallel to the platform margin, induced by currents at more than 150 m estimated water depth. This Late Miocene example also illustrates how changes in intrabasinal environmental conditions (nutrients and/or temperature) may produce changes in stratal patterns and facies architecture if they affect the biological system. Two depositional sequences compose the Miocene platform on Menorca, where a reef‐rimmed platform prograded onto an earlier distally steepened ramp. The transition from the ramp to the reef‐rimmed platform was effected by an increase in accommodation space caused by ecological changes, promoting a shift from a grain‐ to a framework‐producing biota.  相似文献   

4.
Early Eocene carbonate sediments of the Umlatdoh Limestone (Meghalaya, N-E India) represent a shallow marine shelf environment. The major biotic components characterizing these carbonates are calcareous green algae and small to larger benthic foraminifera. Based on the biogenic associations and general sedimentological features, five major facies types (MFTs) are distinguished. They are dominated by poor to moderately sorted grainstones followed by packstones, rudstones and wackestones. Considerable abundance of Halimeda, scarcity of z-corals and poor to moderate occurrence of filter-feeding organisms imply mesotrophic to a slightly oligotrophic nutrient regime. Rare occurrence of geniculate coralline algae is probably due to the lack of suitable substrate and environmental conditions. High incidence of grainstones and packstones, fairly preserved microfossils and few reworked specimens indicate a parautochthonous mode of deposition. Preponderance of Alveolina and Nummulites indicate the possible advent of larger foraminiferal turnover (LFT) in the east Tethys during or even before early Eocene. A conceptual palaeoenvironmental model for the studied succession is provided to showcase various facies gradients, bathymetry levels and shelf zones pertinent to the Umlatdoh Limestone.  相似文献   

5.
The Cenomanian–Turonian succession of southern Mexico is characterized by an abrupt change from shallow marine to pelagic facies. The drowning of the platform coincides with the widely documented Cenomanian–Turonian Oceanic Anoxic Event (CTOAE). A proper understanding of the drowning event and the effects of the OAE requires, as an essential first step, the construction of a detailed stratigraphic framework. This has been achieved and utilizes sedimentological data as well as a combination of benthic and planktonic biostratigraphic schemes.

Deposition of the Cenomanian–Turonian sedimentary rocks of the Guerrero–Morelos basin was controlled by tectonic and oceanographic factors resulting in depositional environments ranging from a semi-restricted shelf, ramp, pelagic and prodelta deposits. Facies analysis indicates that shallow marine limestones of the Morelos Formation (lower-upper Cenomanian) were deposited in intertidal–shallow supratidal and subtidal environments in a semi-restricted shelf. Peloidal-bioclastic packstone–wackestones with minor grainstones are the predominant texture of these rocks. Abundant large benthic foraminifers, calcareous algae (dasycladacean) and mollusks (gastropods and rudists) characterize the fossil assemblage.

The Cuautla Formation (uppermost Cenomanian–Turonian) represents sedimentation on a low-energy, wave-dominated, carbonate ramp. The inner ramp accumulated bioclastic banks and shoals composed of peloidal-benthic foraminifer-grainstone, calcareous red and green algae, rudists and minor solitary corals. The middle ramp is represented by nodular packstones with a diverse assemblage of echinoderms, green and red algae, bryozoan, rudists, solitary corals, roveacrinids, calcisphaerulids, and non-keeled planktonic foraminifers. The outer ramp is dominated by argillaceous wackestone–packstone characterized by calcisphaerulids, roveacrinids, and non-keeled planktonic foraminifers. An increase in terrigenous-clastic material towards the eastern part of the area indicates progradation of a deltaic system while the Mexcala Formation (uppermost Cenomanian–Turonian) was deposited in a pelagic setting.

The drowning of the platform is at the contact between the Morelos and Cuautla or Mexcala formations and is dated as latest Cenomanian. The drowning is a hiatus in most sections and it began before the end of the Cenomanian by a minimum of 150 ky if the top of the Morelos is not eroded.  相似文献   


6.
The non-marine Campins Basin developed in the Oligocene, during a period of early rifting of the Catalan Coastal Ranges. Lacustrine deposits, interbedded between two alluvial units, comprise shallow and deep lacustrine facies. The lower, shallow lacustrine facies are made up of microbialite buildups and thin limestone beds. In the studied area, these facies are overlain by deep lacustrine facies which consist of alternations of several, metre-thick carbonate- and mudstone-dominated intervals. In addition to calcite, which is characteristic of the shallow lacustrine facies, aragonite and abundant dolomite are present in the deep lacustrine facies. This mineralogical change in the sequence reflects an overall increase in the Mg/Ca ratio of the lake waters. The deep lacustrine sequences are interpreted as having formed in a hydrologically closed basin that was subject to changes in the Mg/Ca ratio of the water, probably related to variations in the evaporation/precipitation rate. The sedimentological, mineralogical and isotopic characteristics of the Campins Basin dolomites suggest that, in general, they are primary in origin. The stable isotope data show an approximate covariance between δ13C and δ18O in the lower shallow lacustrine carbonates (calcite) which suggests that they formed during the onset of closure of the lake. The δ13C and δ18O values of the deep lacustrine carbonates display three different clusters that are roughly related to the carbonate mineralogy. Normalisation with respect to calcite of the isotopic compositions of dolomite and aragonite from the deep lacustrine carbonates allows the integration of all these isotope values into one covariant trend. The sequential appearance of different carbonate minerals and the isotopic covariant trend may indicate an overall evaporative concentration of the lake waters. The change in slope of the covariant trend for the isotope values between the shallow and the deep lacustrine carbonates might reflect the change in the waterbody morphology recorded in the basin fill sequence.  相似文献   

7.
Mishrif组碳酸盐岩储层是波斯湾盆地最主要的储集层之一,储层岩石类型主要为礁滩相生物礁灰岩、生屑灰岩和含生屑泥灰岩,储集空间主要为粒间(溶)孔、晶间(溶)孔、铸模孔、表生期组构选择性溶蚀孔洞和基质微孔。储层多呈层状展布,横向上连续,边界受沉积相带约束; 纵向上发育多套致密隔夹层,呈强非均质性。储层发育与保存主要受沉积作用、成岩作用和构造作用影响。碳酸盐岩缓坡背景下发育的生物礁和生屑滩空间分布受盆地基底古构造格局控制,是优质储层分布相带。相对海平面升降旋回控制相带迁移和成岩作用差异,导致优质孔渗层与致密隔夹层交互发育。构造圈闭发育与油气充注时间的耦合有效抑制压实作用和胶结作用对储层的破坏,是储层得以保存的有利因素。  相似文献   

8.
塔里木盆地奥陶系生物礁储集层受到广泛关注。笔者优选塔里木盆地良里塔格地区奥陶系鹰山组顶部生物礁体(NYG-1)和一间房组底部生物礁体(NYG-2)为研究对象,通过详细的野外观察、实测和薄片鉴定,对生物礁的生物类型、岩性特征和沉积相单元进行分析。结果表明:塔里木盆地良里塔格地区鹰山组和一间房组的造礁生物主要由瓶筐石组成,与生物礁相关的岩性有障积礁灰岩、粘结礁灰岩、生屑粒泥灰岩、生屑泥粒灰岩、内碎屑泥粒灰岩、生屑颗粒灰岩、内碎屑颗粒灰岩和球粒颗粒灰岩。NYG-1礁体发育礁基、礁核、礁顶、礁翼和礁盖5个沉积相单元;NYG-2发育礁基、礁核与礁盖3个沉积相单元。从生物类型来看,鹰山组的礁为托盘—障积礁,为近似圆形的台内点礁,展布无明显的方向性;一间房组的礁为托盘障积—粘结礁,属台缘礁,常呈现出礁体迁移的特征。鹰山组和一间房组成礁模式的共同点是都经历了礁基的形成、礁体的发育和礁体的衰亡3个阶段,而差异主要表现在生物礁体的灭亡阶段: 对鹰山组生物礁而言,海平面的快速下降和高能水动力条件导致了瓶筐石的灭亡和内碎屑灰岩的产生;对一间房组生物礁而言,海平面的上升和浮游藻类生物大量发育造成造礁生物甁筐石的灭亡。以上研究对于建立符合塔里木盆地地区条件的礁体沉积模式和探索露头与井下生物礁对比研究有重要意义。  相似文献   

9.
The Late Neoproterozoic Buah Formation (Nafun Group, Oman) is a carbonate unit outcropping in the Jabal Akhdar and Huqf areas. It is composed mostly of shallow‐water carbonates deposited on a distally steepened carbonate ramp. Correlation of two δ13C isotope shifts shows that in the Jabal Akhdar ramp differentiation into fast and slow subsiding areas was followed by lateral progradation. In the Huqf area, however, a uniform scenario of upward shallowing of the facies and lateral progradation is demonstrated by chemostratigraphic timelines cross‐cutting the facies belts. The chemostratigraphic profiles show that the Buah Formation was deposited during sea‐level highstand conditions and that ramp differentiation was due to synsedimentary tectonics. High‐resolution correlation of δ13C profiles from the same lithostratigraphic unit (whether Precambrian or Phanerozoic in age) lacking biostratigraphic data can shed light on carbonate systems dynamics, tectonic vs. eustatic controls on depositional sequences and basin subsidence.  相似文献   

10.
The sedimentary succession of a Late Jurassic (Oxfordian to basal Kimmeridgian) carbonate ramp is described and interpreted. The study area is located in the central part of the Lower Saxony Basin in NW Germany, which forms part of the Central European Basin. Eight well-exposed and undeformed sections of the study area (Süntel area, Wesergebirge and eastern part of the Wiehengebirge) provide detailed information about lithofacies and lateral thickness variations. Biostratigraphically, the age of these sediments is poorly constrained. Twenty microfacies types are recognized that can be grouped into seven facies associations: (a) strongly bioturbated marlstones deposited near storm wave base (SWB), (b) foraminifera-rich wackestones, (c) wackestones and floatstones with biostromes and (d) bioclastic limestones deposited between SWB and fair-weather wave base (FWWB), (e) oolitic and iron-oolitic limestones and (f) siliciclastic sediments deposited above FWWB, and (g) lagoonal deposits. These facies associations characterize a storm dominated shallow mixed carbonate-siliciclastic ramp. Based on facies changes, quartz content, and gamma ray logs, the Korallenoolith Formation can be subdivided into a lower carbonate-dominated and an upper siliciclastic-dominated part, build up by different scales of small- to large-scale deepening- and shallowing-upward cycles. A preliminary correlation of measured outcrops of this formation is presented.  相似文献   

11.
Mud-mound complexes identified within the early to middle Ashgill Cystoid Limestone Formation of northeastern Spain are the first fossil build-ups to be described in the high latitude north-facing margin of Gondwana. Mud-mound complexes comprise individual lenticular mounds (composed of floatstones, cephalopod-rich mudstones and cementstones), flanks and intermound deposits (including pelmatozoan packstones and floatstones). The small mounds are mainly composed of bryozoans, cystoids and crinoids, and were developed on outer ramp environments. Mound initiation depended upon the stabilization and colonization of densely packed lenses of pelmatozoan-rich sediments. In a mid-ramp setting, pelmatozoan–bryozoan meadows were episodically degraded by common wave- and storm-induced processes, the development of semi-consolidated substrates, and the periodic influx of terrigenous material. Finally, during the Hirnantian regression, the Iberian mixed (carbonate–siliciclastic) platform was exposed to subaerial conditions sufficiently for erosion and karstification to occur. From a palaeogeographical point of view, the pattern of the Ashgill Iberian platform deposition is characterized by episodic exclusion of carbonates from most nearshore environments by a shoreline source of siliciclastic sediments. A similar interpretation to that made on the Iberian Cystoid Limestone Formation, in terms of gradual proximality–distality changes, is proposed for comparable facies types in Ashgill limestones described in southwestern Europe. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
The Berriasian Rupelo Formation of the W Cameros Basin consists of a 2–200 m thickness of marginal and open lacustrine carbonate and associated deposits. Open lacustrine facies contain a non-marine biota with abundant charophytes (both stems and gyrogonites), ostracods, gastropods and rare vertebrates. Carbonate production was mainly biogenic. The associated marginal lacustrine (‘palustrine’) facies show strong indications of subaerial exposure and exhibit a wide variety of pedogenic fabrics. Silicified evaporites found near to the top of the sequence reflect a short hypersaline phase in the lake history. The succession was laid down in a low gradient, shallow lake complex characterized by wide fluctuations of the shoreline. Carbon and oxygen stable isotope analyses from the carbonates show non-marine values with ranges of δ13 from ? 7 to ? 11‰and δ18 from ? 3 to ? 7.5‰. Differences in the isotopic composition of open lacustrine carbonates are consistent with sedimentary evidence of variation in organic productivity within the lake. Analyses from the entire sample suite plot on a linear trend; isotopic compositions become lighter with increasing evidence of pedogenic modification. This suggests progressive vadose zone diagenesis and influence of meteoric waters rich in soil-derived CO2. The stable isotope data thus support evidence from petrography and facies relations that ‘palustrine’limestones form through pedogenic modification of lake carbonates.  相似文献   

13.
The Nolichucky Formation (0–300 m thick) formed on the Cambrian pericratonic shelf in a shallow intrashelf basin bordered along strike and toward the regional shelf edge by shallow water carbonates and by nearshore clastics toward the craton. Lateral facies changes from shallow basinal rocks to peritidal carbonates suggest that the intrashelf basin was bordered by a gently sloping carbonate ramp. Peritidal facies of the regional shelf are cyclic, upward-shallowing stromatolitic carbonates. These grade toward the intrashelf basin into shallow ramp, cross-bedded, ooid and oncolitic, intraclast grain-stones that pass downslope into deeper ramp, subwave base, ribbon carbonates and thin limestone conglomerate. Ribbon limestones are layers and lenses of trilobite packstone, parallel and wave-ripple-laminated, quartzose calcisiltite, and lime mudstone arranged in storm-generated, fining upward sequences (1–5 cm thick) that may be burrowed. Shallow basin facies are storm generated, upward coarsening and upward fining sequences of green, calcareous shale with open marine biota; parallel to hummocky laminated calcareous siltstone; and intraformational flat pebble conglomerate. There are also rare debris-flow paraconglomerate (10–60 cm thick) and shaly packstone/wackestone with trace fossils, glauconite horizons and erosional surfaces/hardgrounds. A 15-m thick tongue of cyclic carbonates within the shale package contains subtidal digitate algal bioherms which developed during a period of shoaling in the basin. Understanding the Nolichucky facies within a ramp to intrashelf basin model provides a framework for understanding similar facies which are widely distributed in the Lower Palaeozoic elsewhere. The study demonstrates the widespread effects of storm processes on pericratonic shelf sedimentation. Finally, recognition of shallow basins located on pericratonic shelves is important because such basins influence the distribution of facies and reservoir rocks, whose trends may be unrelated to regional shelf-edge trends.  相似文献   

14.
Oligo–Miocene carbonates associated with the Padthaway Ridge form the southern margin of the Murray Basin, South Australia. The carbonates are a thin, somewhat condensed succession of echinoid and bryozoan‐rich limestones that record accumulation in the complex of islands and seaways and progressive burial of the Ridge through time. The rocks are grainy to muddy bioclastic packstones, grainstones and floatstones, composed of infaunal echinoderms, bryozoans, coralline algae and benthic foraminifera, with lesser contributions from molluscs and serpulid worms. Locally as much as half of these skeletal components are Fe‐stained, relict grains that imbue the lithologies with a conspicuous yellow to orange hue. This variably lithified succession is partitioned into metre‐scale, firmground‐bounded and hardground‐bounded beds textured by extensive Thalassinoides burrows. Dominant lithologies are interpreted as temperate seagrass facies. Limestones contain attributes indicative of both seagrass‐dominated palaeoenvironments and carbonate production and accumulation on unconsolidated, barren sandflat palaeoenvironments. Together these two depositional systems are thought to have generated a single multigenerational, amalgamated facies recording sedimentation within a complex temperate seagrass environment. Limestones overlying the Padthaway Ridge reflect a gradually warming climate, increasing water temperature and decreasing nutrient content, within the framework of a ridge gradually being buried in sediment. This succession from cool–temperate to warm–temperate to subtropical through time permits recognition of the relative influence of changing oceanography on a seagrass‐dominated shallow inter‐island sea floor. Criteria are proposed herein to enable future recognition of similar temperate seagrass facies in Cenozoic limestones elsewhere.  相似文献   

15.
The Dumugol Formation (Lower Ordovician) in the southern part of the Baegunsan syncline, South Korea, contains mixed siliciclastic and carbonate ramp deposits. The ramp sediments were frequently influenced by storm events resulting in tempestites of sandstone-mudstone couplets, bioclastic grainstones to packstones, flat-pebble conglomerates, a skeletal lag layer and laminated calcisiltites. All tempestites are characterized by an erosive to sharp base, poor grading and a transitional upper boundary. The difference in lithology of tempestites appears to have been controlled by the nature of substrates and by proximality. For example, laminated calcisiltites have developed on the shallow carbonate ramp, flat-pebble conglomerates are closely associated with nodular limestones on shallow and deep ramps, and thin skeletal lag layers from fossiliferous argillaceous sediments formed in a basinal setting. The stratigraphic succession of the Dumugol Formation represents an initial transgression followed by a regression. The vertical facies change records the transition from a shallow siliciclastic ramp to a deep carbonate ramp, to a basin, shallowing to a deep carbonate ramp, and to a shallow carbonate ramp. Storm effects are mostly well preserved in shallow to deep ramp deposits.  相似文献   

16.
A thick sequence of late Dinantian (Asbian–Brigantian) carbonates crop out in the Buttevant area, North Co. Cork, Ireland. A mud-mound unit of early Asbian age (the Hazelwood Formation) is the oldest unit described in this work. This formation is partly laterally equivalent to, and is overlain by, over 500 m of bedded platform carbonates which belong to the Ballyclogh and Liscarroll Limestone Formations. Four new lithostratigraphic units are described within the platform carbonates: (i) the early Asbian Cecilstown Member and (ii) the late Asbian Dromdowney Member in the Ballyclogh Limestone Formation; (iii) the Brigantian Templemary Member and (iv) the Coolbane Member in the Liscarroll Limestone Formation. The Cecilstown Member consists of cherty packstones and wackestones that are inferred to have been deposited below fair-weather wavebase. This unit overlies and is laterally equivalent to the mud-mound build-up facies of the Hazelwood Formation. The Dromdowney Member is typified by cyclic-bedded kamaenid-rich limestones possessing shell bands, capped by palaeokarst surfaces, with alveolar textures below and shales above these surfaces. The carbonates of this unit were deposited at or just below fair-weather wavebase, the top of each cycle culminated in subaerial emergence. The Templemary Member consists of cyclic alternations of subtidal crinoidal limestones capped by subtidal lagoonal crinoid-poor, peloidal limestones possessing coral thickets. Intraclastic cherty packstones and wackestones characterize the Coolbane Member, which is inferred to have been deposited below fair-weather wavebase but above storm wavebase. The early Asbian Cecilstown Member has a relatively sparse micro- and macrofauna, typified by scattered Siphonodendron thickets, archaediscids at angulatus stage and common Vissariotaxis. Conversely, macro- and microfauna is abundant in the late Asbian Dromdowney Member. Typical late Asbian macrofossils include the coral Dibunophyllum bipartitum and the brachiopod Davidsonina septosa. The base of the late Asbian (Cf6γ Subzone) is recognized by the first appearance of the foraminifers Cribrostomum lecompteii, Koskinobigenerina and the alga Ungdarella. The Cf6γ Subzone can be subdivided into two biostratigraphic divisions, Cf6γ1 and Cf6γ2, that can be correlated throughout Ireland. Relatively common gigantoproductid brachiopods and the coral Lonsdaleia duplicata occur in the Brigantian units. The base of the Brigantian stage (Cf6δ Subzone) is marked by an increase in the abundance of stellate archaediscids, the presence of Saccamminopsis-rich horizons, Loeblichia paraammonoides, Howchinia bradyana and the rarity of Koninckopora species. Changes in facies at the Cecilstown/Dromdowney Member and the Ballyclogh/Liscarroll Formation boundaries coincide closely with the changes in fossil assemblages that correspond to the early/late Asbian and the Asbian/Brigantian boundaries. These facies changes are believed to reflect major changes in relative sea-level on the Irish platforms. The sea-level variations that are inferred to have caused the facies changes at lithostratigraphic boundaries also brought in the new taxa that define biostratigraphic boundaries. Moreover, many of the Dinantian stage boundaries that are defined biostratigraphically in Great Britain, Belgium and the Russian Platform also coincide with major facies boundaries caused by regressive and transgressive episodes. The integration of detailed biostratigraphic analyses with facies studies will lead to better stratigraphic correlations of Dinantian rocks in northwest Europe. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
广西合山地区合山组沉积相带和沉积模式   总被引:4,自引:2,他引:4  
陆表海碳酸盐岩型含煤岩系是我国含煤岩系的一个重要类型,以广西晚二叠世合山组为代表。文中对该煤系中的碳酸盐岩进行了详细的微相分析,认为合山组沉积时期合山地区为温暖潮湿气候下的浅水环境,提出了包括浅海盆地、生物礁、开阔台地、潮坪和泥炭坪在内的陆表海碳酸盐台地沉积模式,并指出合山组碳酸盐台地边缘是以生物礁为代表的缓坡,最后对合山组的旋回层序进行分析,认为合山组沉积过程中,地壳沉降作用和海平面变化起了主导作用。  相似文献   

18.
《Gondwana Research》2001,4(3):387-394
The rocks of Marwar Supergroup in the trans-Aravalli sector in western India are presumed to span the time interval between Neoproterozoic and early Cambrian. This, predominantly unfossiliferous, marine sedimentary sequence is characterized by a lower arenaceous facies (Jodhpur Group), middle carbonate facies (Bilara Group) and upper argillaceous— arenaceous facies (Nagaur Group) rocks. The sedimentation has been essentially in a shallow basin, described either as the fore-land slope of the rising Aravalli mountains or a sag-basin which developed and evolved due to subsidence of the updomed crust during Neoproterozoic Malani magmatism that failed to open rifts. The carbon isotopic profile for the Bilara Group carbonate rocks in the lower part shows marked oscillations and broadly negative δ13C character with negative anomalies as low as <−4.3‰PDB, observed near the base of Dhanapa Formation (lower unit) and <−6.5‰PDB in the overlying Gotan Formation (middle unit). The upper part of the profile shows a gradual positive shift. The carbon isotopic signatures of the Bilara Group rocks can be correlated with the end-Neoproterozoic — early Cambrian (Vendian — Tommotian) carbon isotopic evolution curve. Extremely low δ13C values indicate the glaciation related cold climatic postulates of the end-Neoproterozoic, followed by the warmer climatic conditions as indicated by the positive shift. The carbon isotopic data for Gotan Formation carbonates, at variance with the globally observed δ13C trends for early Tertiary, do not support the recently proposed Tertiary age for the Bilara Group.  相似文献   

19.
The Kyrpy Group of the East European platform is regarded by tradition as correlative with the Lower Riphean Burzyan Group of the Bashkirian meganticlinorium in the southern Urals. Age and correlation of the Kyrpy Group remain problematic, however, because of a limited geochronological information and controversial interpretation of paleontological materials. Data of C-and Sr-isotope chemostratigraphy contribute much to the problem solution. In the Kyrpy Group of the Kama-Belaya aulacogen, the Kaltasy Formation carbonates 1300 to 2400 m thick (boreholes 133 and 203 of the Azino-Pal’nikovo and Bedryazh areas) show 87Sr/86Sr ratios ranging around 0.7040 and narrow diapasons of δ13C values: about 0.5‰ (V-PDB) in shallow-water facies and-2.0‰ (V-PDB) in sediments of deeper origin. Despite the facies dependence of carbon isotope composition, δ13C variations not greater than ±1.0‰ are depicted in chemostratigraphic profiles of carbonate rocks characterizing separate stratigraphic intervals up to 800 m thick in the above borehole sections. Low 87Sr/86Sr ratios and almost invariant δ13C values in carbonates of the Kaltasy Formation are obviously contrasting with these parameters in the Middle and Upper Riphean deposits, being comparable with isotopic characteristics of the Lower Riphean sediments (Mesoproterozoic deposits older than 1300 Ma). Consequently, the results obtained evidence in favor of the Early Riphean age of the Kaltasy Formation and the Kyrpy Group as a whole.  相似文献   

20.
This work provides new insights to assess the factors controlling carbonate deposition in the siliciclastic fluvial systems of rift basins. Sedimentological and stable‐isotope data of microbialites and associated carbonate facies, along with regional geological information, are shown to reveal the influence of climate and tectonics on the occurrence and attributes of carbonate deposits in these settings. The Vega Formation – a 150 m thick Lower Kimmeridgian siliciclastic fluvial sequence in Asturias Province (northern Spain) – constitutes a candidate for this approach. This unit includes varied facies (stromatolites; rudstones, packstones and wackestones containing oncoids, intraclasts, charophytes and shell bioclasts; marlstones and polygenic calcareous conglomerates) that formed in a low‐gradient fluvial–lacustrine system consisting of shallow, low‐sinuosity oncoid‐bearing channels and pools within marshy areas, with sporadic coarse alluvial deposition. The sedimentological attributes indicate common erosion by channel overflow and rapid lateral changes of subenvironments caused by water‐discharge variations. The carbonate fluvial–lacustrine system developed near uplifted marine Jurassic rocks. The occurrence of the system was conditioned by normal faults (active during the deposition of the unit) that favoured: (i) springs of HCO3–Ca‐rich water from a Rhaetian–Sinemurian carbonate rock aquifer; and (ii) carbonate deposition in areas partially isolated from the adjacent siliciclastic fluvial system. The microbialite δ13C and δ18O values support deposition in a hydrologically open system, fed by ambient‐temperature meteoric water, with riparian vegetation. Three types of lamination in the stromatolites and oncoids reflect distinct morphological types of cyanobacterial communities. The textural pattern of lamination parallels δ13C and δ18O changes, suggesting short‐term cycles of precipitation and temperature. A moderately to strongly contrasted seasonal and/or pluriannual precipitation regime is inferred from the cyclic δ13C pattern of the lamination and from the discontinuous and asymmetrical growth of oncoids. Thus, the isotopic and sedimentological attributes of the carbonate deposits were linked to short‐term climate changes associated with semi‐arid conditions, consistent with the studied climatic zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号