首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of groundwater with cement in a geological disposal facility (GDF) for intermediate level radioactive waste will produce a high pH leachate plume. Such a plume may alter the physical and chemical properties of the GDF host rock. However, the geochemical and mineralogical processes which may occur in such systems over timescales relevant for geological disposal remain unclear. This study has extended the timescale for laboratory experiments and shown that, after 15 years two distinct phases of reaction may occur during alteration of a dolomite-rich rock at high pH. In these experiments the dissolution of primary silicate minerals and the formation of secondary calcium silicate hydrate (C–S–H) phases containing varying amounts of aluminium and potassium (C–(A)–(K)–S–H) during the early stages of reaction (up to 15 months) have been superseded as the systems have evolved. After 15 years significant dedolomitisation (MgCa(CO3)2 + 2OH  Mg(OH)2 + CaCO3 + CO32−(aq)) has led to the formation of magnesium silicates, such as saponite and talc, containing variable amounts of aluminium and potassium (Mg–(Al)–(K)–silicates), and calcite at the expense of the early-formed C–(A)–(K)–S–H phases. This occured in high pH solutions representative of two different periods of cement leachate evolution with little difference in the alteration processes in either a KOH and NaOH or a Ca(OH)2 dominated solution but a greater extent of alteration in the higher pH KOH/NaOH leachate. The high pH alteration of the rock over 15 years also increased the rock’s sorption capacity for U(VI). The results of this study provide a detailed insight into the longer term reactions occurring during the interaction of cement leachate and dolomite-rich rock in the geosphere. These processes have the potential to impact on radionuclide transport from a geodisposal facility and are therefore important in underpinning any safety case for geological disposal.  相似文献   

2.
《Applied Geochemistry》2006,21(4):614-631
In the Szigetvár area, SW Hungary, shallow groundwaters draining upper Pleistocene loess and Holocene sediments are considerably contaminated by domestic effluents and leachates of farmland fertilizers. The loess contains calcite and dolomite, but gypsum was not recognized in these sediments. The anthropogenic inputs contain significant amounts of Ca and SO4. The Ca from these anthropogenic inputs is promoting calcite growth, with concomitant consumption of carbonate alkalinity, undersaturation of the system with respect to dolomite, and dolomite dissolution; in brief, is driving “dedolomitization reactions”. Geochemical arguments supporting the occurrence of “dedolomitization reactions” in the area are provided by the results of mass balance and thermodynamic analyses. The mass balances predicted the weather sequence dolomite > calcite > plagioclase > K-feldspar, at odds with widely accepted sequences of weatherability where calcite is the first mineral in the weathering sequence. The exchange between calcite and dolomite can be a side effect of “dedolomitization reactions” because they cause precipitation of calcite. The thermodynamic prerequisites for “dedolomitization reactions” are satisfied by most local groundwaters (70%) since they are supersaturated (or in equilibrium) with respect to calcite, undersaturated (or in equilibrium) with respect to dolomite, and undersaturated with respect to gypsum. The Ca vs. SO4 and Mg vs. SO4 trends are also compatible with homologous trends resulting from “dedolomitization reactions”.  相似文献   

3.
The response to CO2 exposure of a variety of carbonate cemented rocks has been investigated using pressurised batch experiments conducted under simulated reservoir conditions, 70 °C and 20 MPa, and with a durations of up to14 months. Calcite, dolomite, ankerite and siderite cement were present in the unreacted reservoir rocks and caprocks. Core plugs of the reservoir rocks were used in order to investigate the alterations in situ. Crushing of the caprock samples was necessary to maximise reactions within the relatively short duration of the laboratory experiments. Synthetic brines were constructed for each batch experiment to match the specific formation water composition known from the reservoir and caprock formations in each well. Chemical matched synthetic brines proved crucial in order to avoid reactions due to non-equilibra of the fluids with the rock samples, for example observations of the dissolution of anhydrite, which were not associated with the CO2 injection, but rather caused by mismatched brines.Carbonate dissolution as a response to CO2 injection was confirmed in all batch experiments by both petrographical observations and geochemical changes in the brines. Increased Ca and Mg concentrations after 1 month reaction with CO2 and crushed caprocks are ascribed to calcite and dolomite dissolution, respectively, though not verified petrographically. Ankerite and possible siderite dissolution in the sandstone plugs are observed petrographically after 7 months reaction with CO2; and are accompanied by increased Fe and Mn contents in the reacted fluids. Clear evidence for calcite dissolution in sandstone plugs is observed petrographically after 14 months of reaction with CO2, and is associated with increased amounts of Ca (and Mg) in the reacted fluid. Dolomite in sandstones shows only minor dissolution features, which are not clearly supported by increased Mg content in the reacted fluid.Silicate dissolution cannot be demonstrated, either by chemical changes in the fluids, as Si and Al concentrations remain below the analytical detection limits, nor by petrographical changes, as partly dissolved feldspar grains and authigenic analcime are present in the sediments prior to the experiments. It is noteworthy, that authigenic K-feldspar and authigenic albite in sandstones show no signs of dissolution and consequently seem to be stable under the experimental conditions.  相似文献   

4.
《Applied Geochemistry》2006,21(9):1522-1538
Factors controlling the chemical composition of water interacting with finely-crushed kimberlite have been investigated by sampling pore waters from processed kimberlite fines stored in a containment facility. Discharge water from the diamond recovery plant and surface water from the containment facility, which acts as plant intake water, were also sampled. All waters sampled are pH-neutral, enriched in SO4, Mg, Ca, and K, and low in Fe. Pore-water samples, representing the most concentrated waters, are characterized by the highest SO4 (up to 4080 mg l−1), Mg (up to 870 mg l−1), and Ca (up to 473 mg l−1). The water discharged from the processing plant has higher concentrations of all major dissolved constituents than the intake water. The dominant minerals present in the processed fines and the kimberlite ore are serpentine and olivine, with small amounts of Ca sulphate and Fe sulphide restricted to mud xenoclasts. Reaction and inverse modeling suggest that much of the water-rock interaction takes place within the plant and involves the dissolution of chrysotile and Ca sulphate, and precipitation of silica and Mg carbonate. Evapoconcentration also appears to be a significant process affecting pore water composition in the containment facility. The reaction proposed to be occurring during ore processing involves the dissolution of CO2(g) and may represent an opportunity to sequester atmospheric CO2 through mineral carbonation.  相似文献   

5.
The Proterozoic Vazante Group carbonate rocks were submitted to multiple stages of fluid circulation from diagenesis to orogenesis as documented by detailed mineralogical, fluid inclusion and isotopic studies of the Upper Morro do Pinheiro and Lower Pamplona members from the Serra do Poço Verde Formation in the southern part of the paleo-basin. These units are the main hosts for the hypogene, structurally-controlled zinc silicate deposits in the Vazante Zinc District, including the Vazante mine, which is considered to be the largest willemitic (Zn2SiO4) deposit in the world, with estimated total resources of 40–60 Mt at 20% Zn. Five hydrothermal alteration types were identified in the Southern Extension of the Vazante Group. (I) Early stage alteration comprises dolomite substitution bands and nodules, associated with moderate salinity H2O-NaCl-CaCl2 fluids, with temperatures around 90 °C, interpreted as late-diagenetic. The calculated C and O isotopic compositions of the fluids suggest meteoric and/or connate origin and interaction with organic carbon. (II) Pre-ore stage alteration is evidenced by dog-tooth dolomite and quartz with minor Fe-oxi/hydroxides which fills dissolution voids formed by H2O-NaCl-CaCl2 ± MgCl2 fluids at temperatures around 100° to 150 °C. The C isotopic data also indicate interaction with organic carbon. The two first stages are poor in ore-related elements. (III) Ore stage encompasses four phases of mineral precipitation. The first is distal and characterized by red stained dolostones due to disseminated hematite and red dolomite. The second is the main phase of the ore stage, composed of massive red dolomite, massive hematite and willemite with enrichment mainly in Fe2O3, SiO2, Ag, As, Cd, Cu, Ni, Pb, Se and Zn. The third phase comprises white dolomite, hematite and traces of willemite with enrichment in MnO, Cd, Ni and Pb. The calculated C and O isotopic compositions of the fluids (at 180 °C) associated with pervasive alteration yielded values heavier than the diagenetic stage and lower than the host rock. The fourth phase corresponds to Zn-chlorite and quartz which are associated with H2O-NaCl fluids of variable salinities and distinct temperatures (90–140 °C and 170–190 °C). (IV) Pyrite-bearing vein characterized by pyrite, sphalerite, white dolomite, fine hematite and late quartz, with C and O isotopic and fluid inclusion compositions that are similar to the three phases of dolomite of the ore stage. These data suggest a co-genetic relationship of these two alteration styles. (V) The late sulfide stage characterized by rare galena-bearing stringers with sphalerite, chalcocite, greenockite, covellite and white dolomite that cross-cut the main ore stage phases. The ore-related fluid compositions associated with the silicate zinc mineralization in the southern part of the Vazante Group are also similar to the fluids reported in previous work for the sulfide zinc-lead deposits in the northern part, indicating favorable conditions for metal transport during the Brasiliano Orogeny. Sulfide ore would have precipitated in zones where sulfur was available and silicate zinc in structures where mineralizing fluids interacted with evolved meteoric water. This finding implies that carbonate sequences in other districts with sulfide lead-zinc deposits may also host hypogene silicate zinc deposits.  相似文献   

6.
Recent work on the weathering of high standing islands (HSI’s) of New Zealand (Goldsmith et al., 2008), Dominica (Goldsmith et al., 2010) Martinique and Guadeloupe (Rad et al., 2006) and portions of the Philippines (Schopka et al., 2011) shows weathering rates based on stream water chemistry for areas draining andesitic terrains are comparable to weathering rates determined for basaltic terrains, indicating that andesite weathering might be much more important in drawing down atmospheric CO2 than previously recognized. While an easily erodible parent material has been largely attributed to sustaining rates at these locations, little is known to known regarding its associated reaction kinetics. We conducted a series of batch dissolution experiments on andesitic material collected from ∼10,000 year old tephra deposits from Dominica to determine the dissolution rate of major and trace mineral phases to better understand geochemical processes controlling weathering flux from these areas. Dissolution experiments were conducted over a range of pH (4 and 7) on bulk samples and mineral separates.The dissolution rates based on Si release from the Dominica tephra bulk samples were similar, and ranged from 0.04 to 0.13 μmole Si/g-day in water, and ∼0.14 to 0.27 μmole Si/g-day in dilute acid (initial pH ∼4). Although the bulk of the ash is predominately composed of vesicular felsic (Na–Al–Si) volcanic glass, reaction rates and stoichiometry indicate ash dissolution is dominated by the reactivity of trace Mg or Ca-bearing silicate phases (olivine, pyroxene or amphiboles) and Ca–phosphate phases (apatite), especially under slightly acidic conditions. Analysis of reacted phases by SEM shows little evidence of alteration of glassy material, whereas surfaces of Ca–Mg inosilicates, olivine and apatite show etched features indicative of dissolution. Results of the dissolution experiments suggest that, although these phases are relatively minor components of the ash, they contribute disproportionately to the overall weathering flux, and their reactivity may be particularly important in areas where physical weathering and erosion are constantly exposing new fresh surfaces available for chemical reaction.  相似文献   

7.
The leaching behaviour of fly ash from a Co smelter situated in the Zambian Copperbelt was studied as a function of pH (5–12) using the pH-static leaching test (CEN/TS 14997). Various experimental time intervals (48 h and 168 h) were evaluated. The leaching results were combined with the ORCHESTRA modelling framework and a detailed mineralogical investigation was performed on the original FA and leached solid residues. The largest amounts of Co, Cu, Pb and Zn were leached at pH 5, generally with the lowest concentrations between pH 9 and 11 and slightly increased concentrations at pH 12. For most elements, the released concentrations were very similar after 48 h and 168 h, indicating near-equilibrium conditions in the system. Calcite, clinopyroxenes, quartz and amorphous phases predominated in the fly ash. Various metallic sulfides, alloys and the presence of Cu, Co and Zn in silicates and glass were detected using SEM/EDS and/or TEM/EDS. The leaching of metals was mainly attributed to the dissolution of metallic particles. Partial dissolution of silicate and glass fractions was assumed to significantly influence the release of Ca, Mg, Fe, K, Al and Si as well as Cu, Co and Zn. The formation of illite was suggested by the ORCHESTRA modelling to be one of the main solubility-controlling phases for major elements, whereas Co and Zn were controlled by CoO and zincite, respectively. Sorption of metals on hydrous ferric oxides was assumed to be an important attenuation mechanism, especially for the release of Pb and Cu. However, there is a high risk of Co, Cu, Pb and Zn mobility in the acidic soils around the smelter facility. Therefore, potential local options for “stabilisation” of the fly ash were evaluated on the basis of the modelling results using the PHREEQC code.  相似文献   

8.
The Jabali Zn–Pb–Ag deposit is located about 110 km east of Sana'a, the capital of Yemen, along the western border of the Marib-Al-Jawf/Sab'atayn basin. The economic mineralization at Jabali is a nonsulfide deposit, consisting of 8.7 million tons at an average grade of 9.2% zinc, derived from the oxidation of primary sulfides. The rock hosting both primary and secondary ores is a strongly dolomitized carbonate platform limestone of the Jurassic Shuqra Formation (Amran Group). The primary sulfides consist of sphalerite, galena and pyrite/marcasite. Smithsonite is the most abundant economic mineral in the secondary deposit, and is associated with minor hydrozincite, hemimorphite, acanthite and greenockite. Smithsonite occurs as two main generations: smithsonite 1, which replaces both host dolomite and sphalerite, and smithsonite 2, occurring as concretions and vein fillings in the host rock. At the boundary between smithsonite 1 and host dolomite, the latter is widely replaced by broad, irregular bands of Zn-bearing dolomite, where Zn has substituted for Mg. The secondary mineralization evolved through different stages: 1) alteration of original sulfides (sphalerite, pyrite and galena), and release of metals in acid solutions; 2) alteration of dolomite host rock and formation of Zn-bearing dolomite; 3) partial dissolution of dolomite by metal-carrying acid fluids and replacement of dolomite and Zn-bearing dolomite by a first smithsonite phase (smithsonite 1). To this stage also belong the direct replacement of sphalerite and galena by secondary minerals (smithsonite and cerussite); 4) precipitation of a later smithsonite phase (smithsonite 2) in veins and cavities, together with Ag- and Cd-sulfides.The δ18O composition of Jabali smithsonite is generally lower than in other known supergene smithsonites, whereas the carbon isotope composition is in the same range of the negative δ13C values recorded in most supergene nonsulfide ores. Considering that the groundwaters and paleo-groundwaters in this area of Yemen have negative δ18O values, it can be assumed that the Jabali smithsonite precipitated in different stages from a combination of fluids, possibly consisting of local groundwaters variably mixed with low-temperature hydrothermal waters. The carbon isotope composition is interpreted as a result of mixing between carbon from host rock carbonates and soil/atmospheric CO2.The most favorable setting for the development of the Jabali secondary deposit could be placed in the early Miocene (~ 17 Ma), when supergene weathering was favored by major uplift and exhumation resulting from the main phase of Red Sea extension. Low-temperature hydrothermal fluids may have also circulated at the same time, through the magmatically-induced geothermal activity in the area.  相似文献   

9.
Bodies of magnesite-rich rocks (magnesite ± talc ± quartz ± dolomite), locally containing emerald deposits, occur within the Swat Valley. These rocks, part of the Indus suture mélange group, are distributed mostly along contacts of serpentinized ultramafic rocks with carbonate ± graphite-bearing metasedimentary rocks. Their field association, petrographic details, mineralogical composition and geochemical characteristics show that they likely formed due to carbonate alteration of previously serpentinized ultramafic rocks by CO2-bearing fluids released as a result of metamorphism of spatially associated, originally sedimentary rocks of the Indo-Pakistan plate.Locally, late-stage hydrothermal activity affected these highly fissile magnesite-rich rocks to produce veins and stockworks of quartz as well as emerald, Cr-rich tourmaline and Cr, Ni-rich muscovite. Detailed petrographic and mineral chemical investigations suggest that all three Cr-bearing silicates are genetically related and their Cr, as well as Ni and Mg found in Cr-rich muscovite and Cr-rich tourmaline, was derived from the original ultramafic protoliths.Detailed geochemical comparison reveals that relative to non-mineralized sections, magnesite-rich rocks in mineralized zones show significant enrichment in B and Be as well as As, Pb, Zr, Rb, Ba, W, Sn, Sr and Y. Boron and Be enrichment in these rocks appears to be structurally controlled. More extreme B and Be enrichment is evident in small granitic dikes cutting granite gneisses and in Miocene leucogranitic stocks at Malakand 45 km southwest. These geochemical features argue strongly for a leucogranite-associated source for Be-transporting fluids to the emerald's host rocks.  相似文献   

10.
Chemical weathering of Mg, Ca-silicates and alumino-silicates contributes significantly to the drawdown of atmospheric CO2 over long time scales. The present work focuses on how this mode of weathering may change in the presence of free-living bacteria in oligotrophic waters, which compose most of the surface freshwaters of the Earth. Forsterite (Fo90) was reacted for 1 week with a stable Escherichia coli population in water maintained at 37 °C and neutral pH in a batch reactor. Control samples with suspensions of pure olivine powders and E. coli cells in pure water were also used for reference. Olivine controls reproduce the Mg, Si and Fe release in solutions predicted from rates published in the literature with pH shifts of less than 0.5 unit. After 1 week, under abiotic conditions, weathered surfaces are enriched in Fe and Fe3+ relative to the initial composition of the mineral. Bacterial controls (without minerals) show decreasing Eh with increasing cell concentrations (−50 mV with 7 × 107 cells/mL and −160 mV with 8 × 108 cells/mL). Magnesium concentrations in bacterial control solutions are in the μg/L range and can be accounted for by the release of Mg from dead cells. More than 80% of the cells were still alive after 1 week. The solutions obtained in the experiments in which olivine reacts in the presence of cells show Mg and Si concentrations a few tens of percent lower than in the mineral control samples, with a prominent depletion of Fe(III) content of the mineral surfaces. Magnesium mass balance discounts both significant bacterial uptake and inhibition of the Mg dissolution rates as a consequence of changing pH and Eh. Coating by bacterial cell layers is also negligible. E. coli reduces the chemical weathering of olivine. This study infers that the presence of free-living Proteobacteria, a prevalent group of subsurface bacteria, should decrease the amount of riverine Mg released by chemical weathering of mafic rocks.  相似文献   

11.
《Applied Geochemistry》1998,13(7):905-916
Experiments measuring kaolinite and smectite dissolution rates were carried out using batch reactors at 35° and 80°C. No potential catalysts or inhibitors were present in solution. Each reactor was charged with 1 g of clay of the ≤2 μm fraction and 80, 160 or 240 ml of 0.1–4 M KOH solution. An untreated but sized kaolinite from St. Austell and two treated industrial smectites were used in the experiments. One smectite is a nearly pure montmorillonite, while the second has a significant component of beidellitic charge (35%). The change in solution composition and mineralogy was monitored as a function of time. Initially, the 3 clays dissolved congruently. No new formed phases were observed by XRD and SEM during the pure dissolution stage. The kaolinite dissolution is characterized by a linear release of silica and Al as a function of the log of time. This relationship can be explained by a reaction affinity effect which is controlled by the octahedral layer dissolution. Far from equilibrium, dissolution rates are proportional to a0.56±0.12OH at 35°C and to a0.81±0.12OH at 80°C. The activation energy of kaolinite dissolution increases from 33±8 kJ/mol in 0.1 M KOH solutions to 51±8 kJ/mol in 3 M KOH solutions. In contrast to kaolinite, the smectites dissolve at much lower rates and independently of the aqueous silica or Al concentrations. The proportionality of the smectite dissolution rate constant at 35 and 80°C was a0.15±0.06OH. The activation energy of dissolution appears to be independent of pH for smectite and is found to be 52±4 kJ/mol. The differences in behavior between the two kinds of minerals can be explained by structural differences. The hydrolysis of the tetrahedral and the octahedral layer appears as parallel reactions for kaolinite dissolution and as serial reactions for smectite dissolution. The rate limiting step is the dissolution of the octahedral layer in the case of kaolinite, and the tetrahedral layer in the case of smectite.  相似文献   

12.
《Applied Geochemistry》1998,13(6):687-705
The results of an integrated geochemical and mineralogical study conducted at the Agnico-Eagle gold-mine tailings impoundment, Joutel, Québec, are correlated with bacterial populations determined from an enumeration of 3 groups of Thiobacilli. The tailings were determined to contain approximately 5 wt.% sulphide–S, predominantly as pyrite, and up to 30 wt.% carbonate minerals, chiefly as dolomite–ankerite and siderite. The objective of the study was to evaluate the potential for the development of acidic drainage and dissolved-metal migration in carbonate-rich tailings impoundments, and to compare the results of the geochemical and microbiological characterization of the tailings. Sulphide-oxidation reactions have proceeded to a depth of 20–100 cm below the tailings surface. Pyrrhotite consistently shows more alteration than pyrite and arsenopyrite. Pyrrhotite is altered mainly through the replacement by goethite. The most abundant Thiobacilli are neutrophilic bacteria of the Thiobacillus thioparus type. The maximum most probable number values for these bacteria occur 20–40 cm below the tailings surface, a depth that coincides with the disappearance of oxide coatings. This observation, coupled with the sharp decline in gas-phase O2 concentration, suggests that rapid bacterially-mediated S–oxidation is occurring at this depth. The pore-water pH throughout the tailings varies between 6.5 and 8.5; no low-pH waters were observed in the impoundment. These neutral pH conditions are attributed to the effect of acid-consuming carbonate-mineral dissolution reactions, which are also indicated by increased concentrations of Mg and Ca and alkalinity in the shallow zone of the tailings. As a result of these acid-neutralization reactions, dissolved metal concentrations are low.  相似文献   

13.
Anhydrous spinel peridotite xenoliths in Quaternary nepheline-basanite and melilite- or sodalite-bearing lavas of the Wau-en-Namus volcano in S Libya range from lherzolites to harzburgites recording melt extraction in a shallow setting (≤ 2 GPa). Primary clinopyroxenes have distinct trace element characteristics documenting LILE (large ion lithophile element) depletion or enrichment events predating the formation of glass pockets and veins in the xenoliths. These glasses are aluminous and alkali-rich, range in composition from ultrabasic to silicic (43–67 wt.% SiO2) and may contain empty vugs and micro-phenocrysts of olivine, clinopyroxene, spinel, plagioclase, sodalite, apatite that are similar in composition to phenocrysts in the host lavas. Reactions of infiltrating melt and xenolith minerals are documented by diffuse Fe–Ca-rich rims of olivine in contact with glass, and by spongy-textured reaction domains caused by incongruent dissolution of primary pyroxenes and spinel. Some glasses have trace element characteristics similar to that of the host Ne-basanite, suggesting they were derived from the same source during entrainment and transport to the surface. Incompatible element enrichment and Sr–Nd isotopic compositions of the analyzed host lava are similar to HIMU (high μ; μ = 238Pb/204Pb)-type magmas, but the Pb isotopic composition is less radiogenic compared to other intra-plate Neogene magmatic rocks from N Africa.  相似文献   

14.
The biologically mediated weathering of the ocean crust has received increasing attention in recent decades, but the rates and the possible mechanism of elemental release during microbe–basalt interactions occurring below the seafloor have not been studied in detail. In this study, we established an experimental weathering study of seafloor natural basaltic glass comparing the effect of microbial activity (Pseudomonas fluorescens) in P-rich and P-poor media with parallel controls containing either nonviable cells or organic acid. The changes in the chemical parameters, including pH, bacterial densities, and ion concentrations (Ca, Mg, Si, Mn, Al, Fe, and P) in the solution, were examined during the different batch experiments. The results showed that the pH decreased from 7.0 to 3.5 and the bacterial density increased from 105 to 108 cells/ml during the first 120 h, and the cell numbers remained constant at 108 cells/ml and the pH increased from 3.5 to 6 between 120 h and 864 h in the P-bearing reactors containing bacteria. In contrast, during all the experimental time, the pH remained close to neutral condition in the abiotic control systems and the dissolution rates increased markedly with a decrease in pH and became minimal at near-neutral pH in P-bearing reactors containing bacteria, where Ca, Si, and Mg release rates were 2- to 4-fold higher than those obtained in chemical systems and biotic P-limited systems. Furthermore, the surfaces of the natural volcanic glass from the biotic systems were colonized by bacteria. Simultaneously, the etch pits were observed by Scanning Electron Microscope, which further indicate that the bacteria may promote the mineral dissolution for energy gain. Some elements (e.g., Fe, Mn, and Al) releasing from natural volcanic glass are likely an important source of the elemental budget in the ocean, and thus the element release and its possible mechanism conducted in this experimental study have potential implications on the biogeochemical cycling process in the Mid-Oceanic Ridge setting.  相似文献   

15.
The effect of citrate and oxalate on tremolite dissolution rate was measured at 37 °C in non-stirred flow-through reactors, using modified Gamble’s solutions at pH 4 (macrophages), 7.4 (interstitial fluids) and 5.5 (intermediate check point) containing 0, 0.15, 1.5 and 15 mmol L−1 of citrate or oxalate. The dissolution rates calculated from Si concentration in the output solutions without organic ligands depend on pH, decreasing when the pH increases from −13.00 (pH 4) to −13.35 (pH 7.4) mol g−1 s−1 and following a proton-promoted mechanism. The presence of both ligands enhances dissolution rates at every pH, increasing this effect when the ligand concentration increases. Citrate produces a stronger effect as a catalyst than oxalate, mainly at more acidic pHs and enhances dissolution rates until 20 times for solutions with 15 mmol L−1 citrate. However, at pH 7.4 the effect is lighter and oxalate solutions (15 mmol L−1) only enhances dissolution rates eight times respect to free organic ligand solutions. Dissolution is promoted by the attack to protons and organic ligands to the tremolite surface. Magnesium speciation in oxalate and citrate solutions shows that Mg citrate complexes are more effective than oxalate ones during the alteration of tremolite in magrophages, but this tendency is the opposite for interstitial fluids, being oxalate magnesium complexes stronger. The biodurability estimations show that the destruction of the fibers is faster in acidic conditions (macrophages) than in the neutral solutions (interstitial fluid). At pH 4, both ligands oxalate and citrate reduce the residence time of the fibers with respect to that calculated in absence of ligands. Nevertheless, at pH 7.4 the presence of ligands does not reduce significantly the lifetime of the fibers.  相似文献   

16.
The Murgul (Artvin, NE Turkey) massive sulfide deposit is hosted dominantly by Late Cretaceous calc-alkaline to transitional felsic volcanics. The footwall rocks are represented by dacitic flows and pyroclastics, whereas the hanging wall rocks consist of epiclastic rocks, chemical exhalative rocks, gypsum-bearing vitric tuff, purple vitric tuff and dacitic flows. Multi-element variation diagrams of the hanging wall and footwall rocks exhibit similar patterns with considerable enrichment in K, Rb and Ba and depletion in Nb, Sr, Ti and P. The chondrite-normalized rare earth element (REEs) patterns of all the rocks are characterized by pronounced positive/negative Eu anomalies as a result of different degrees of hydrothermal alteration and the semi-protected effects of plagioclase fractionation.Mineralogical results suggest illite, illite/smectite + chlorite ± kaolinite and chlorite in the footwall rocks and illite ± smectite ± kaolinite and chlorite ± illite in the hanging wall rocks. Overall, the alteration pattern is represented by silica, sericite, chlorite and chlorite–carbonate–epidote–sericite and quartz/albite zones. Increments of Ishikawa alteration indexes, resulting from gains in K2O and losses in Na2O and the chlorite–carbonate–pyrite index towards to the center of the stringer zone, indicate the inner parts of the alteration zones. Calculations of the changes in the chemical mass imply a general volume increase in the footwall rocks. Abnormal volume increases are explained by silica and iron enrichments and a total depletion of alkalis in silica zone. Relative K increments are linked to the sericitization of plagioclase and glass shards and the formation of illite/smectite in the sericite zone. In addition, Fe enrichment is always met by pyrite formation accompanied by quartz and chlorite. Illite is favored over chlorite, smectite and kaolinite in the central part of the ore body due to the increase in the (Al + K)/(Na + Ca) ratio. Although the REEs were enriched in the silicification zone, light REEs show depletion in the silicification zone and enrichment in the other zones in contrast to the heavy REEs' behavior. Hydrothermal alteration within the hanging wall rocks, apart from the gypsum-bearing vitric tuffs, is primarily controlled by chloritization with proportional Fe and Mg enrichments and sericitization.The δ18O and δD values of clay minerals systematically change with increasing formation temperature from 6.6 to 8.7‰ and − 42 to − 50‰ for illites, and 8.6 and − 52‰ for chlorite, respectively. The O- and H-stable isotopic data imply that hydrothermal-alteration processes occurred at 253–332 °C for illites and 136 °C for chlorite with a temperature decrease outward from the center of the deposit. The positive δ34S values (20.3 to 20.4‰) for gypsum suggest contributions from seawater sulfate reduced by Fe-oxide/-hydroxide phases within altered volcanic units. Thus, the hydrothermal alteration possibly formed via a dissolution–precipitation mechanism that operated under acidic conditions. The K–Ar dating (73–62 Ma) of the illites indicates an illitization process from the Maastrichtian to Early Danian period.  相似文献   

17.
《Sedimentary Geology》2006,183(1-2):51-69
The Chicxulub Sedimentary Basin of the northwestern Yucatan Peninsula, Mexico, which was formed because of the largest identified Phanerozoic bolide impact on Earth, became a site of deposition of dominantly marine carbonate sediments during most of the Cenozoic Era. This is a study of the filling and diagenetic history of this basin and surrounding areas. The study makes use of lithologic, biostratigraphic, petrographic, and geochemical data obtained on core samples from boreholes drilled throughout the northwestern Yucatan Peninsula.The core sample data indicate that: 1) The Chicxulub Sedimentary Basin concentrated the deposition of pelagic and outer-platform sediments during the Paleocene and Eocene, and, in places, during the Early Oligocene, as well, and filled during the Middle Miocene, 2) deeper-water limestone also is present within the Paleocene and Lower Eocene of the proposed Santa Elena Depression, which is located immediately south of the Basin, 3) shallow-water deposits are relatively more abundant outside the Basin and Depression than inside, 4) the autigenic and allogenic silicates from the Paleogene formations are the most abundant inside the Depression, 5) sediment deposition and diagenesis within the Basin also were controlled by impact crater topography, 6) the abundance of the possible features of subaerial exposure increases upward and outward from the center of the Basin, and 7) the formation of replacive low-magnesium calcite and dolomite, dedolomitization, dissolution, and precipitation of vug-filling calcite and dolomite cement have been more common outside the Basin than inside.δ18O in whole-rock (excluding vug-filling) calcite from core samples ranges from − 7.14‰ to + 0.85‰ PDB. δ13C varies from − 6.92‰ to + 3.30‰ PDB. Both stable isotopes correlate inversely with the abundance of subaerial exposure features indicating that freshwater diagenesis has been extensive especially outside and at the edge of the Chicxulub Sedimentary Basin.δ18O and δ13C in whole-rock (excluding vug-filling) dolomite ranges from − 5.54‰ to + 0.87‰ PDB and − 4.63‰ to + 3.38‰ PDB, respectively. Most dolomite samples have negative δ18O and positive δ13C suggesting that replacive dolomitization involved the presence of a fluid dominated by freshwater and/or an anomalously high geothermal gradient.Most dolomite XRD-determined mole percent CaCO3 varies between 51 and 56. Replacive dolomite is larger, more euhedral, and less stoichiometric inside the Chicxulub Sedimentary Basin than outside.  相似文献   

18.
Reaction path modeling of water–rock interaction in a gneissic shallow aquifer of the Sila Massif was performed in kinetic (time) mode, under conditions of closed-system with secondary minerals and closed-system with CO2, to investigate the influence of both dolomite dissolution and biotite dissolution on the chemical characteristics of secondary vermiculites. Magnesium–Al- and calcium–Al-vermiculites are the major components of the vermiculite solid solution precipitated in the early stages of the process, which is dominated by dolomite dissolution. In contrast, Mg–Mg–Fe- and Ca–Mg–Fe vermiculites are important components of the vermiculite solid solution produced in the late stages of the process, where biotite dissolution prevails. Outcomes of this reaction-path-modeling exercise on vermiculite chemistry are fully consistent with the results obtained by Apollaro et al. (in press) through speciation–saturation calculations. In particular, Apollaro et al. (in press) showed that the pH of Mg–Al-vermiculite/Mg–Mg–Fe-vermiculite coexistence is 7.3. This value is virtually equal to the pH of Mg–Al-vermiculite/Mg–Mg–Fe-vermiculite iso-activity, 7.35, which is obtained from the results of reaction-path-modeling runs 3 and 4 carried out in this work.  相似文献   

19.
Significant amounts of sulfuric acid (H2SO4) rich saline water can be produced by the oxidation of sulfide minerals contained in inland acid sulfate soils (IASS). In the absence of carbonate minerals, the dissolution of phyllosilicate minerals is one of very few processes that can provide long-term acid neutralisation. It is therefore important to understand the acid dissolution behavior of naturally occurring clay minerals from IASS under saline–acidic solutions. The objective of this study was to investigate the dissolution of a natural clay-rich sample under saline–acidic conditions (pH 1–4; ionic strengths = 0.01 and 0.25 M; 25 °C) and over a range of temperatures (25–45 °C; pH 1 and pH 4). The clay-rich sample referred to as Bottle Bend clay (BB clay) used was from an IASS (Bottle Bend lagoon) in south-western New South Wales (Australia) and contained smectite (40%), illite (27%), kaolinite (26%) and quartz (6%). Acid dissolution of the BB clay was initially rapid, as indicated by the fast release of cations (Si, Al, K, Fe, Mg). Relatively higher Al (pH 4) and K (pH 2–4) release was obtained from BB clay dissolution in higher ionic strength solutions compared to the lower ionic strength solutions. The steady state dissolution rate (as determined from Si, Al and Fe release rates; RSi, RAl, RFe) increased with decreasing solution pH and increasing temperature. For example, the highest log RSi value was obtained at pH 1 and 45 °C (−9.07 mol g−1 s−1), while the lowest log RSi value was obtained at pH 4 and 25 °C (−11.20 mol g−1 s−1). A comparison of these results with pure mineral dissolution rates from the literature suggests that the BB clay dissolved at a much faster rate compared to the pure mineral samples. Apparent activation energies calculated for the clay sample varied over the range 76.6 kJ mol−1 (pH 1) to 37.7 kJ mol−1 (pH 4) which compare very well with the activation energy values for acidic dissolution of monomineralic samples e.g. montmorillonite from previous studies. The acid neutralisation capacity (ANC) of the clay sample was calculated from the release of all structural cations except Si (i.e. Al, Fe, K, Mg). According to these calculations an ANC of 1.11 kg H2SO4/tonne clay/day was provided by clay dissolution at pH 1 (I = 0.25 M, 25 °C) compared to an ANC of 0.21 kg H2SO4/tonne clay/day at pH 4 (I = 0.25 M, 25 °C). The highest ANC of 6.91 kg H2SO4/tonne clay/day was provided by clay dissolution at pH 1 and at 45 °C (I = 0.25 M), which is more than three times higher than the ANC provided under the similar solution conditions at 25 °C. In wetlands with little solid phase buffering available apart from clay minerals, it is imperative to consider the potential ANC provided by the dissolution of abundantly occurring phyllosilicate minerals in devising rehabilitation schemes.  相似文献   

20.
Water analysis data of 54 groundwater samples from 18 uniformly distributed wells were collected during three campaigns (June, September and December 2004). Q-mode hierarchical cluster analysis (HCA) was employed for partitioning the water samples into hydrochemical facies. Interpretation of analytical data showed that the abundance of major ions was identified as follows: Ca ? Mg > Na > K and HCO3 ? Cl > SO4. Three major water facies are suggested by the HCA analysis. The samples from the area were classified as recharge area waters (Ca–Mg–HCO3 water), transition area waters (Mg–Ca–HCO3–Cl water), and discharge area waters (Mg–Ca–Cl–HCO3 water). Inverse geochemical modeling suggests that relatively few phases are required to derive the water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into two categories: (1) evaporite weathering reactions and (2) precipitation of carbonate minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号