首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Sonar performance modeling is crucial for submarine and anti–submarine operations. The validity of sonar performance models is generally limited by environmental uncertainty, and particularly uncertainty in the vertical sound speed profile (SSP). Rapid environmental assessment (REA) products, such as oceanographic surveys and ocean models may be used to reduce this uncertainty prior to sonar operations. Empirical orthogonal functions (EOF) applied on the SSPs inherently take into account the vertical gradients and therefore the acoustic properties. We present a method that employs EOFs and a grouping algorithm to divide a large group of SSPs from an ocean model simulation into smaller groups with similar SSP characteristics. Such groups are henceforth called acoustically stable groups. Each group represents a subset in space and time within the ocean model domain. Regions with low acoustic variability contain large and geographically contiguous acoustically stable groups. In contrast, small or fragmented acoustically stable groups are found in regions with high acoustic variability. The main output is a map of the group distribution. This is a REA product in itself, but the map may also be used as a planning aid for REA survey missions.  相似文献   

2.
This presentation introduces a new ocean autonomous profiler for multiparametric surveys at fixed geographical locations. The profiler moves down and up along a mooring line, which is taut vertically between a subsurface flotation and an anchor. This observational platform carries such modern oceanographic equipment as the Nortek Aquadopp-3D current meter and the Teledyne RDI Citadel CTD-ES probe. The profiler was successfully tested in the northeastern Black Sea during 2007–2009. By using the profiler, new data on the layered organization of the marine environment in the waters over the upper part of the continental slope were obtained. The temporal variability of the fine-scale structure of the acoustic backscatter at 2 MHz was interpreted along with biooptical and chemical data. The patchy patterns of the acoustic backscatter were associated with physical and biological processes such as the advection, propagation of submesoscale eddy, thermocline displacement, and diel migration of zooplankton. Further applications of the multidisciplinary moored profiler technology are discussed.  相似文献   

3.
The data of borehole geoacoustic and electromagnetic measurements in Kamchatka are compared with the results of laboratory and field experiments on electromagnetic excitation of rocks. A noticeable similarity in the responses of the natural geological medium and rock specimens is observed. The field experiments with controlled electromagnetic sources show that the geophones placed in boreholes are capable of reliably detecting the responses of rocks in situ to electric impacts as low as 0.5 mV/m. The obtained results provide the experimental evidence in favor of the previously proposed hypothesis of modulation of geoacoustic emission in rocks in situ by the ULF atmospheric electromagnetic field.  相似文献   

4.
通过结合保色散关系空间差分格式和Runge-Kutta时间格式的数值方法,研究了耗散作用对声波传播的影响.结果表明,耗散的不均匀性会同时影响声波的传播轨迹和传输损耗.不均匀的耗散会使得波包上部和下部承受不同程度的衰减,造成波包能量中心向弱耗散方向移动,使波包能量中心的传播轨迹发生偏折.与此同时,声波的传输损耗也受到了改变:与无耗散情况相比,声波的几何扩散衰减受到抑制;与均一耗散情况相比,声波的大气声吸收明显减小.由于声波衰减系数与声波频率的平方成正比,耗散作用使声波传播具有色散性质.不均匀耗散对于声波波包能量中心传播轨迹的偏折作用随频率的增加而增强.  相似文献   

5.
Shallow water internal solitary waves have become a major topic ofinterest to oceanographers and acousticians. In this paper we reviewthe cross-disciplinary status of joint ocean-acoustic solitary wavestudies and predictions. We consider the process of acoustical modecoupling in the presence of solitary waves and the correspondingacoustical intensity loss due to increased coupling with the bottom. Astudy of the interaction of an acoustical field with a train ofsolitary waves is undertaken at a range of frequencies. At a resonantfrequency the acoustic field can interact with the solitary wavepacket which results in mode conversions (acoustic energy isredistributed among the modes, often from lower-order to higher-ordermodes). Higher signal losses can occur in the higher order modesthrough increased bottom attenuation and result in an anomalousacoustical intensity loss at the resonant frequency.We present some new results of joint ocean-acoustic research, from adedicated study in the Strait of Messina, where solitary waves aregenerated by semidiurnal tidal flow over topographic variations. TheUniversity of Hamburg weakly nonhydrostatic two layer model is used forsimulating the generation and propagation of solitary waves. In particular, the physicalstates encountered during an October 1995 cruise in the Strait of Messina (betweenItaly and Sicily) are simulated. Various parameter space sensitivity studies, about theexisting cruise conditions, are performed. The modelled solitary wave trains arecompared against conductivity-temperature-depth (CTD) chain measurements interms of amplitudes, wavelengths, phase speeds and correlations with data. Predictedand observed sound speeds are used in acoustical intensity calculations thatare conducted with a parabolic equation (PE) model. The differences in theresultant acoustical intensity fields provide a guide for the tuning of theoceanographic model parameters. The tuned oceanographic model showsagreement with data for the first and second solitary waves in terms ofamplitude, wavelength and phase speed. The calculated available potentialenergy from the simulation results is in the range of the data analogue.  相似文献   

6.
The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.  相似文献   

7.
Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty.  相似文献   

8.
The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water–sediment interface is derived based on Biot’s theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water–sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.  相似文献   

9.
The aim of this paper is to test the effectiveness of feature models in ocean acoustic forecasting. Feature models are simple mathematical representations of the horizontal and vertical structures of ocean features (such as fronts and eddies), and have been used primarily for assimilating new observations into forecasts and for compressing data. In this paper we describe the results of experiments in which the models have been tested in acoustic terms in eddy and frontal environments in the Iceland Faeroes region. Propagation-loss values were obtained with a 2D parabolic-equation (PE) model, for the observed fields, and compared to PE results from the corresponding feature models and horizontally uniform (range-independent) fields. The feature models were found to represent the smoothed observed propagation-loss field to within an rms error of 5 dB for the eddy and 7 dB for the front, compared to 10–15-dB rms errors obtained with the range-independent field. Some of the errors in the feature-model propagation loss were found to be due to high-amplitude oceanographic noise in the field. The main conclusion is that the feature models represent the main acoustic properties of the ocean but do not show the significant effects of small-scale internal waves and fine-structure. It is recommended that feature models be used in conjunction with stochastic models of the internal waves, to represent the complete environmental variability.  相似文献   

10.
This paper is concerned with the correlation of fast local processes that generate geoacoustic emissions and the regional character of excitation in the geologic medium prior to large earthquakes. It is shown that this comparison is possible based on the unifying process of vertical energy transport due to the earth’s degassing. For the first time here, we examine local geoacoustic characteristics by analyzing Poincare diagrams and developing difference equations that describe dynamic changes in the characteristics of acoustic emission sources. Based on this concept, and incorporating the continuity of geoacoustic emissions, we suggest a decompressional model of seismoacoustic noise and geoacoustic emissions as a component of the noise.  相似文献   

11.
This paper presents a high-resolution operational forecast system for providing support to oil spill response in Belfast Lough. The system comprises an operational oceanographic module coupled to an oil spill forecast module that is integrated in a user-friendly web application. The oceanographic module is based on Delft3D model which uses daily boundary conditions and meteorological forcing obtained from COPERNICUS and from the UK Meteorological Office. Downscaled currents and meteorological forecasts are used to provide short-term oil spill fate and trajectory predictions at local scales. Both components of the system are calibrated and validated with observational data, including ADCP data, sea level, temperature and salinity measurements and drifting buoys released in the study area. The transport model is calibrated using a novel methodology to obtain the model coefficients that optimize the numerical simulations. The results obtained show the good performance of the system and its capability for oil spill forecast.  相似文献   

12.
The estimation of the seismological parameters of historical earthquakes is a key step when performing seismic hazard assessment in moderate seismicity regions as France. We propose an original method to assess magnitude and depth of historical earthquakes using intensity data points. A flowchart based on an exploration tree (ET) approach allows to apply a consistent methodology to all the different configurations of the earthquake macroseismic field and to explore the inherent uncertainties. The method is applied to French test case historical earthquakes, using the SisFrance (BRGM, IRSN, EDF) macroseismic database and the intensity prediction equations (IPEs) calibrated in the companion paper (Baumont et al. Bull Earthq Eng, 2017). A weighted least square scheme allowing for the joint inversion of magnitude and depth is applied to earthquakes that exhibit a decay of intensity with distance. Two cases are distinguished: (1) a “Complete ET” is applied to earthquakes located within the metropolitan territory, while (2) a “Simplified ET” is applied to both, offshore and cross border events, lacking information at short distances but disposing of reliable data at large ones. Finally, a priori-depth-based magnitude computation is applied to ancient or poorly documented events, only described by single/sporadic intensity data or few macroseismic testimonies. Specific processing of “felt” testimonies allows exploiting this complementary information for poorly described earthquakes. Uncertainties associated to magnitude and depth estimates result from both, full propagation of uncertainties related to the original macroseismic information and the epistemic uncertainty related to the IPEs selection procedure.  相似文献   

13.
由于实验室测试环境条件与深海海底的原位温压环境存在较大的差异,取样测量的沉积物声学参数通常偏离海底原位状态的真实值.该文利用深水型压载式沉积声学原位测量系统,在水深超过5000 m的西太平洋海域开展了沉积物声学原位测量试验,准确获取了深海底原位状态下沉积物的声速和声衰减系数,并同步采集了沉积物柱状样品.结果显示,实验室测量的沉积物声速、声衰减系数均高于原位测量结果.通过温压校正和数据—模型对比表明,实验室声速比与原位声速比存在较大的差异,难以通过温压校正模型和频散模型完全改正,这可能与深海沉积物的结构扰动有关.较之浅海沉积物,软弱的深海沉积物结构更易受到采样过程的扰动,因而深海沉积物的声学特性测量更为困难,这表明在深海海底声学研究采用原位测量技术具有必要性.该研究标志着我国海底声学研究由浅海走向深海,对推动海底声学的深入研究具有重要意义.  相似文献   

14.
15.
A fast, simple method is presented to obtain acoustic seabed segmentation from multibeam sonar backscatter data, for situations where processed backscatter curves are already available. Unsupervised statistical clustering is used to classify multibeam sonar backscatter curves in their entirety, with the curves essentially treated as geometrical entities. High variability in the backscatter curves is removed by along-track averaging prior to clustering, and no further preprocessing is required. The statistical clustering method is demonstrated with RESON 8125 multibeam sonar data obtained in two bathymetrically complex environments. These are a sandwave field in Keppel Bay, Queensland, and an area of inter-island sand, reef, seagrass, and rhodolith beds in Esperance Bay, Western Australia. The resulting acoustic charts are visually compelling. They exhibit high spatial coherence, are largely artifact free, and provide spatial context to comparatively sparse grab samples with relatively little effort. Since the backscatter curve is an intrinsic property of the seafloor, the mappings form standalone charts of seafloor acoustic properties. In themselves they do not need ground truthing. Conceptually, use of the full angular backscatter curve should form the primary means of obtaining acoustic seabed segmentation. However, this is dependent on the scale and configuration of seabed backscatter features compared to the dimensions of the averaged swathe used to obtain reliable realisations of the backscatter curve.  相似文献   

16.
Slip boundary condition is commonly utilized to model elastic wave propagation through layered earth media. The same approach is used here to characterize acoustic wave propagation along a cased borehole with various cement bond conditions. By modeling the cement layer between casing and formation as a viscoelastic slip interface with complex coupling rigidity parameters, one can not only reduce the complexity in the classical elastic wave modeling of the problem, but also efficiently model various complicated wave phenomena that are difficult for the existing modeling. More specifically, the new theory can well describe the effect of the cement bond condition change and the location of the change (i.e., whether it is in the first interface between casing and cement, or the second interface between cement and formation) on the acoustic waves, demonstrating the good modeling capability and predicting power. Application of the theory to field data shows that the theory can correctly model the acoustic wave characteristics and interpret the cement bond condition, thus providing a useful fundament theory for casing bond evaluation using acoustic logging.  相似文献   

17.
Cetacean mass stranding events associated with naval mid-frequency sonar use have raised considerable conservation concerns. These strandings have mostly involved beaked whales, with common pathologies, including "bubble lesions" similar to decompression sickness symptoms and acoustic traumas. However, other cetacean species have also stranded coincident with naval exercises. Possible mechanisms for the strandings include a behavioral response that causes deep divers to alter their diving behavior, which then results in decompression sickness-like impacts. Current mitigation measures during military exercises are focused on preventing auditory damage (hearing loss), but there are significant flaws with this approach. Behavioral responses, which occur at lower sound levels than those that cause hearing loss, may be more critical. Thus, mitigation measures should be revised. A growing number of international bodies recognize this issue and have urged increasing scrutiny of sound-producing activities, but many national jurisdictions have resisted calls for increased protection.  相似文献   

18.
To date, an outstanding issue in hydrologic data assimilation is a proper way of dealing with forecast bias. A frequently used method to bypass this problem is to rescale the observations to the model climatology. While this approach improves the variability in the modeled soil wetness and discharge, it is not designed to correct the results for any bias. Alternatively, attempts have been made towards incorporating dynamic bias estimates into the assimilation algorithm. Persistent bias models are most often used to propagate the bias estimate, where the a priori forecast bias error covariance is calculated as a constant fraction of the unbiased a priori state error covariance. The latter approach is a simplification to the explicit propagation of the bias error covariance. The objective of this paper is to examine to which extent the choice for the propagation of the bias estimate and its error covariance influence the filter performance. An Observation System Simulation Experiment (OSSE) has been performed, in which ground water storage observations are assimilated into a biased conceptual hydrologic model. The magnitudes of the forecast bias and state error covariances are calibrated by optimizing the innovation statistics of groundwater storage. The obtained bias propagation models are found to be identical to persistent bias models. After calibration, both approaches for the estimation of the forecast bias error covariance lead to similar results, with a realistic attribution of error variances to the bias and state estimate, and significant reductions of the bias in both the estimates of groundwater storage and discharge. Overall, the results in this paper justify the use of the traditional approach for online bias estimation with a persistent bias model and a simplified forecast bias error covariance estimation.  相似文献   

19.
地铁交通引起的环境振动的实测与分析   总被引:7,自引:1,他引:6  
本文根据现场实测数据,对某地铁交通1号线沿线典型区段引起的环境振动实况和振动特性及传播规律等进行了分析研究。结果表明,地面振动Z振级主要由测点到轨道中心的水平距离决定,并且在离开地铁隧道中心线一定距离范围内,地面振动Z振级存在振动放大区。此外,本文还根据实测资料和现有研究成果提出了该地铁1号线引起环境振动Z振级的统计回归公式。该式从数学表达式的角度反映了振动信号的放大效应,可为预测或估计地铁运营诱发的环境振动提供参考。  相似文献   

20.
A short‐term flood inundation prediction model has been formulated based on the combination of the super‐tank model, forced with downscaled rainfall from a global numerical weather prediction model, and a one‐dimensional (1D) hydraulic model. Different statistical methods for downscaled rainfall have been explored, taking into account the availability of historical data. It has been found that the full implementation of a statistical downscaling model considering physically‐based corrections to the numerical weather prediction model output for rainfall prediction performs better compared with an altitudinal correction method. The integration of the super‐tank model into the 1D hydraulic model demonstrates a minimal requirement for the calibration of rainfall–runoff and flood propagation models. Updating the model with antecedent rainfall and regular forecast renewal has enhanced the model's capabilities as a result of the data assimilation processes of the runoff and numerical weather prediction models. The results show that the predicted water levels demonstrate acceptable agreement with those measured by stream gauges and comparable to those reproduced using the actual rainfall. Moreover, the predicted flood inundation depth and extent exhibit reasonably similar tendencies to those observed in the field. However, large uncertainties are observed in the prediction results in lower, flat portions of the river basin where the hydraulic conditions are not properly analysed by the 1D flood propagation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号