首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Colony meteorite is an accretionary breccia containing several millimeter-to centimeter-size chondritic clasts embedded in a chondritic host. Colony is one of the least equilibrated CO3 chondrites; it has an unrecrystallized texture and contains compositionally heterogeneous olivine and low-Ca pyroxene, kamacite with low Ni and Co and high Cr, amoeboid inclusions with low FeO and MnO, a fine-grained silicate matrix with very high FeO, and numerous small chondrules with clear pink glass. However, Colony differs from normal CO chondrites in several respects: Although Al, Sc, V, Cr, Ir, Fe, Au and Ga abundances are consistent with a CO chondrite classification, certain lithophiles (Mg and Mn), siderophiles (Ni and Co) and chalcophiles (Se and Zn) are depleted by factors of 10–40%. The shape of Colony's thermoluminescence (TL) glow curve is similar to that of Allan Hills A77307 (another unequilibrated chondrite with CO3 petrological characteristics) and different from those of normal CO chondrites. [ALHA77307 also resembles Colony in having low Mg, Mn, Ni and Co, compared to normal CO chondrites, but it possesses CO-CV levels of Se and Zn and nearly CV levels of Cd.] Colony is badly weathered; it contains 22.7 wt.% Fe2O3 and 5.7 wt.% H2O. Recalculating the analysis on an H2O-free basis with all Fe2O3, NiO and CoO converted to metal, yields an inferred original metallic Fe, Ni abundance of ~ 19 wt.%. This is similar to that of Kainsaz (an unweathered CO3 fall), but much higher than that of all other CO3 chondrites (< 6.3 wt.%). Although it is possible that Colony and either ALHA77307 or Kainsaz constitute distinct CO3 chemical subgroups, the weathered nature of Colony and ALHA77307 preclude the drawing of firm conclusions. Nevertheless, it is clear that CO3 chondrites vary more in compositional and petrological properties than was previously recognized.  相似文献   

2.
Abstract— In order to explore the nature and history of micrometeorites, we have measured the thermoluminescence (TL) properties of four micrometeorites, three cosmic spherules, and one irregular scoriaceous particle, that we found in a survey of 17 micrometeorites. These micrometeorites have TL sensitivities ranging from 0.017 ± 0.002 to 0.087 ± 0.009 (on a scale normalized to 4 mg of the H3.9 chondrite Dhajala). The four micrometeorites have very similar TL peak temperatures and TL peak widths, and these distinguish them from CI, most CM, CV, CO, and ordinary chondrites. However, the TL properties of these micrometeorites closely resemble those of the unusual CM chondrite MacAlpine Hills (MAC) 87300 and terrestrial forsterites. Heating experiments on submillimeter chips of a CM chondrite and a H5 chondrite suggest that these TL properties are have not been significantly affected by atmospheric passage. Thus we suggest that there is no simple linkage between these micrometeorites and the established meteorite classes, and that forsterite is an important component of these micrometeorites, as it is in many primitive solar system materials.  相似文献   

3.
Abstract— We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O‐isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine‐grained matrix suggests that Fountain Hills formed in a dust‐poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near‐CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10?3bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine‐spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type‐4 ordinary chondrites.  相似文献   

4.
Allan Hills A79003 is an LL3 chondrite with a petrologic subtype of 3.4 ± 0.2. Contrary to previous suggestions, it is not paired with other Allan Hills specimens. It contains haxonite, (Fe, Ni)23C6; shock-melted, ‘fizzed’ metal-troilite intergrowths; and translucent, glassy-looking Huss matrix (fine-grained, Fe-rich silicate matrix), in addition to the normal opaque and recrystallized varieties of Huss matrix. Some chondrules are partly coated with opaque matrix, others with translucent matrix. Translucent matrix is more uniform in composition and contains less S, CaO and FeO and more MgO than the opaque variety. Both kinds of matrix rimmed chondrules before consolidation of the meteorite.  相似文献   

5.
A piece of the Sutter's Mill meteorite, fragment SM2‐1d, has been examined using thermoluminescence techniques to better understand its thermal and metamorphic history. The sample had very weak but easily measureable natural and induced thermoluminescence (TL) signals; the signal‐to‐noise ratio was better than 10. The natural TL was restricted to the high‐temperature regions of the glow curve suggesting that the meteorite had been heated to approximately 300 °C within the time it takes for the TL signal to recover from a heating event, probably within the last 105 years. It is possible that this reflects heating during release from the parent body, close passage by the Sun, or heating during atmospheric passage. Of these three options, the least likely is the first, but the other possibilities are equally likely. It seems that temperatures of approximately 300 °C reached 5 or 6 mm into the meteorite, so that all but one of the small Sutter's Mill stones have been heated. The Dhajala normalized induced TL signal for SM2‐1d is comparable to that of type 3.0 chondrites and is unlike normal CM chondrites, the class it most closely resembles, which do not have detectable TL sensitivity. The shape of the induced TL curve is comparable to other low‐type ordinary, CV, and CO chondrites, in that it has a broad hummocky structure, but does not resemble any of them in detail. This suggests that Sutter's Mill is a unique, low‐petrographic–type (3.0) chondrite.  相似文献   

6.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   

7.
Using the in-plane rotation of polished thin section, the X-ray diffraction patterns exhibiting a high degree of randomness similar to powder pattern were obtained for 10 CO3 chondrites, which distinguished 130 reflections of olivine in the chondrules from that in the matrix, and showed systematic differences among subtypes based on the full width at half maximum intensity of two olivine 130 peaks. A lower petrologic subtype is characterized by sharp and strong peaks for forsteritic olivines in type I chondrules and by a weak and broad peak for ferroan matrices, and the higher petrologic subtypes are characterized by sharp and strong peaks for recrystallized matrices and a weakened or absent peak of magnesian olivines. The systematic change in the split peak of olivine 130 was linked with the mean diffusion length of Mg-Fe in olivine phenocrysts in type I chondrules. Fe-Ni diffusion in metals was considered to estimate the peak temperature of CO3.0, near the surface on the parent body. The peak metamorphic temperatures were estimated to be ~600–910 K using the onion-shell model when the cooling time was 106–108 yr on the parent body. A weak peak for ferroan olivine of CO3.0 suggests the amorphous silicate in matrices. The modal abundance of the amorphous Fe-silicate for subtype 3.0 (15% for Allan Hills [ALH] 77307 and 9% for Yamato [Y]-81020) was also evaluated from the deviation in trend of the relative peak ratios of the Fe-rich (≥Fa25) and Mg-rich (<Fa25) olivines for subtypes. The existence of martensites was suggested for ALH 77307. Amorphous silicate in matrices is a more resistant primordial component that produced the CO3 chondrites than martensite.  相似文献   

8.
Abstract– We used the electron microprobe to study matrix in the ungrouped type 3.0 carbonaceous chondrite Acfer 094 using 7 × 7‐point, focused‐beam arrays; data points attributable to mineral clasts were discarded. The grid areas show resolvable differences in composition, but differences are less pronounced than we observed in studies of CR2 LaPaz Icefield (LAP) 02342 (Wasson and Rubin [2009]) and CO3.0 Allan Hills A77307 (Brearley [1993]). A key question is why Acfer shows an anomalously uniform composition of matrix compared with these other carbonaceous chondrites. Both whole‐rock and matrix samples of Acfer 094 show enhancements of Ca and K; it appears that these reflect contamination during hot desert weathering. By contrast, the whole‐rock abundance of Na is low. Although weathering effects are responsible for some fractionations, it appears that nebular effects are also resolvable in matrix compositions in Acfer 094. As with LAP 02342, we infer that the observed differences among different areas were inherited from the solar nebula and may have been carried by porous chondrules that experienced low (about 20%) degrees of melting. Acfer 094 has been comminuted by one or more impact events that may also have caused volatile loss. Thus, despite preserving evidence (e.g., an exceptionally high content of presolar SiC) implying a high degree of pristinity, Acfer 094 is far from pristine in other respects. This evidence of comminution and an O‐isotopic composition similar to values measured in metamorphosed CM chondrites suggest that Acfer was hydrated before being outgassed by the inferred impact event. Convection within the plume associated with the impact event probably also contributed to the homogenization of the Acfer 094 matrix.  相似文献   

9.
Abstract— We have measured O‐isotopic ratios in a variety of olivine grains in the CO3 chondrite Allan Hills (ALH) A77307 using secondary ion mass spectrometry in order to study the chondrule formation process and the origin of isolated olivine grains in unequilibrated chondrites. Oxygen‐isotopic ratios of olivines in this chondrite are variable from δ17O = ?15.5 to +4.5% and δ18O = ?11.5 to +3.9%, with Δ17O varying from ?10.4 to +3.5%. Forsteritic olivines, Fa<1, are enriched in 16O relative to the bulk chondrite, whereas more FeO‐rich olivines are more depleted in 16O. Most ratios lie close to the carbonaceous chondrite anhydrous minerals (CCAM) line with negative values of Δ17O, although one grain of composition Fa4 has a mean Δ17O of +1.6%. Marked O‐isotopic heterogeneity within one FeO‐rich chondrule is the result of incorporation of relic, 16O‐rich, Mg‐rich grains into a more 16O‐depleted host. Isolated olivine grains, including isolated forsterites, have similar O‐isotopic ratios to olivine in chondrules of corresponding chemical composition. This is consistent with derivation of isolated olivine from chondrules, as well as the possibility that isolated grains are chondrule precursors. The high 16O in forsteritic olivine is similar to that observed in forsterite in CV and CI chondrites and the ordinary chondrite Julesburg and suggests nebula‐wide processes for the origin of forsterite that appears to be a primitive nebular component.  相似文献   

10.
Abstract— The Burnwell, Kentucky, meteorite fell as a single stone on 1990 September 4. The Burnwell meteorite has lower Fa in olivine (15.8 mol%), Fs in orthopyroxene (13.4 mol%), Co in kamacite (0.36 wt%), FeO from bulk chemical analysis (9.43 wt%), and Δ17O (0.51 ± 0.02%), and higher Fe, Ni, Co metal (19.75 wt% from bulk wet chemical analysis) than observed in H chondrites. The Burnwell meteorite plots on extensions of H-L-LL chondrite trends for each of these properties towards more reducing compositions than in H chondrites. Extensions of this trend have been previously suggested in the case of other low-FeO chondrites or silicate inclusions in the HE iron Netschaëvo, but interpretation of the evidence in these meteorites is complicated by terrestrial weathering, chemical disequilibrium or reduction. In contrast, the Burn-well meteorite is an equilibrated fall that exhibits no evidence for reduction. As such, it provides the first definitive evidence for extension of the H-L-LL ordinary chondrite trend beyond typical H values towards more reducing compositions.  相似文献   

11.
Abstract– Sacramento Wash 005 (SaW) 005, Meteorite Hills 00428 (MET) 00428, and Mount Howe 88403 (HOW) 88403 are S‐rich Fe,Ni‐rich metal meteorites with fine metal structures and homogeneous troilite. We compare them with the H‐metal meteorite, Lewis Cliff 88432. Phase diagram analyses suggest that SaW 005, MET 00428, and HOW 88403 were liquids at temperatures above 1350 °C. Tridymite in HOW 88403 constrains formation to a high‐temperature and low‐pressure environment. The morphology of their metal‐troilite structures may suggest that MET 00428 cooled the slowest, SaW 005 cooled faster, and HOW 88403 cooled the quickest. SaW 005 and MET 00428 contain H‐chondrite like silicates, and SaW 005 contains a chondrule‐bearing inclusion that is texturally and compositionally similar to H4 chondrites. The compositional and morphological similarities of SaW 005 and MET 00428 suggest that they are likely the result of impact processing on the H‐chondrite parent body. SaW 005 and MET 00428 are the first recognized iron‐ and sulfide‐rich meteorites, which formed by impact on the H‐chondrite parent body, which are distinct from the IIE‐iron meteorite group. The morphological and chemical differences of HOW 88403 suggest that it is not from the H‐chondrite body, although it likely formed during an impact on a chondritic parent body.  相似文献   

12.
Abstract— The isotopic abundances of the noble gases in bulk samples of the Guangnan L6 chondrite and of the anomalous CV3 chondrite Ningqiang were measured. Guangnan yields a cosmic-ray exposure age of 2.9 ± 0.4 Ma and belongs to the group of L chondrites with low exposure ages. Ningqiang, however, shows a cosmic-ray exposure age of 42.2 ± 4.0 Ma, the highest for a CV3 chondrite. The concentrations of radiogenic 4He and 40Ar in Guangnan are the lowest observed in any ordinary chondrite. A U/Th-4He age of 27 ± 16 Ma and a 40K–40Ar age of 142 ± 14 Ma are calculated assuming L chondritic U, Th, and K concentrations. This assumption is justified considering the fact that a mineralogical composition typical for L chondrites was reported for this meteorite. The observed severe gas losses must have occurred at or before the onset of the exposure of the meteoroid to the cosmic radiation. For the Ningqiang carbonaceous chondrite concordant gas retention ages are obtained: The U/Th-4He age is 4170 ± 160 Ma whereas the 40K–40Ar age is 4260 ± 70 Ma, assuming average U, Th, and K concentrations for C3 chondrites.  相似文献   

13.
Chromites from Middle Ordovician fossil L chondrites and from matrix and shock‐melt veins in Catherwood, Tenham, and Coorara L chondrites were studied using Raman spectroscopy and TEM. Raman spectra of chromites from fossil L chondrites showed similarities with chromites from matrix and shock‐melt veins in the studied L chondrite falls and finds. Chromites from shock‐melt veins of L chondrites show polycrystallinity, while the chromite grains in fossil L chondrites are single crystals. In addition, chromites from shock‐melt veins in the studied L chondrites have high densities of planar fractures within the subgrains and many subgrains show intergrowths of chromite and xieite. Matrix chromite of Tenham has similar dislocation densities and planar fractures as a chromite from the fossil meteorite Golvsten 001 and higher dislocation densities than in chromite from the fossil meteorite Sextummen 003. Using this observation and knowing that the matrix of Tenham experienced 20–22 GPa and <1000° C, an upper limit for the P,T conditions of chromite from Golvsten 001 and Sextummen 003 can be estimated to be 20–22 GPa and 1000° C (shock stage S3–S6) and 20 GPa and 1000° C (S3–S5), respectively, and we conclude that the studied fossil meteorite chromites are from matrix.  相似文献   

14.
Abstract— The mineralogy and composition of six Mongolian meteorites were studied in some detail. Previously, only limited information existed about these rocks, and some were still unclassified. The six meteorites include three ordinary chondrites and three irons. The ordinary chondrite Adzhi-Bogdo (stone) is a regolith breccia (LL3–6) containing various types of clasts (some of foreign origin) embedded within a fine-grained clastic matrix. Tugalin Bulen (H6) and Noyan Bogdo (L6) meteorites are typical, well-metamorphosed ordinary chondrites. Adzhi-Bogdo (iron) has to be regarded as an IA iron meteorite like Campo del Cielo or Canyon Diablo; although the sample studied had been heated to about 900 °C–950 °C some time in the past, thus eradicating all original structural elements. Manlai is structurally closely related to the IIC iron meteorites; but based on its chemistry, which does not fit into this group, it is suggested that Manlai is an anomalous iron meteorite. The third iron, Sargiin Gobi, is certainly a normal member of the IA iron meteorites. The concentrations and isotopic compositions of He, Ne, and Ar were measured for all meteorites and their gas retention ages and exposure ages are discussed.  相似文献   

15.
Abstract— Fountain Hills is a metal‐rich chondrite with mineral and whole chondrite oxygen isotope compositions that suggest it is a CB chondrite. However, its petrologic characteristics suggest that it has been modified by shock and recrystallization to a greater degree than other CB chondrites. It differs texturally from the CB chondrites in that its metal is interstitial to the silicate and does not occur as discrete clasts as in the other CB chondrites. Portions of Fountain Hills appear to be recrystallized and it contains large (mm‐size) olivine rimmed by pyroxene. A characteristic of the CB chondrites is the presence of small sulfide blebs in large metal clasts and anomalously heavy (15N‐enriched) nitrogen often associated with metal surrounding the sulfide blebs, but Fountain Hills lacks sulfide and its nitrogen is relatively light. The differences between Fountain Hills and the other CB chondrites can be attributed to a secondary process, most likely impact‐melting and recrystallization, that overprinted its primary features and it is inferred that Fountain Hills is an impact‐modified CB chondrite.  相似文献   

16.
Abstract— Carbonaceous chondrites of the Ornans‐type (CO3) form a well‐documented metamorphic series. To investigate the conditions under which metamorphism took place, whole rock oxygen and carbon isotope analysis has been carried out on 10 CO3 chondrites (ALH A77307 [3.0], Colony [3.0], Kainsaz* [3.1], Felix* [3.2], Ornans* [3.3], ALH 82101 [3.3], Lancé* [3.4], ALH A77003 [3.5], Warrenton* [3.6], and Isna [3.7] [*denotes a fall]). Whole rock oxygen isotope analysis was carried out by laser‐assisted fluorination, whole rock carbon isotope analysis by continuous flow mass spectrometry. The results of this study indicate that the oxygen and carbon isotopes in CO3 finds have been significantly disturbed by terrestrial weathering processes. Conclusions based on the isotopic composition of such weathered finds may be significantly flawed. In particular, the Antarctic meteorite ALH A77307 (3.0), suggested as being close in composition to CO‐CM chondrite precursor material, has experienced significant terrestrial contamination. Oxygen isotope data for CO3 falls indicates that there is a subtle increase in Δ17O values with increasing metamorphic grade for sub‐types 3.1 to 3.4. This increase does not persist to higher sub‐types, i.e., Warrenton (3.6). These relationships are explicable in terms of the progressive formation of phyllosilicates, coupled with loss of primary phases such as melilite, and suggest that an aqueous fluid phase was present during metamorphism. Carbon abundance and δ13C values of CO3 falls decrease with increasing metamorphic grade. These trends reflect progressive changes in the nature of the organic macromolecular component during metamorphic heating and lend additional support to the evidence that CO3 chondrites are part of a metamorphic series. The most likely setting for metamorphism was on the CO3 parent body. The “Ornans paradox,” whereby Ornans (3.3) should belong to a higher sub‐type based on chemical compared to petrographic evidence, may result from local‐scale redox differences on the CO3 parent body. A wide variety of classification schemes have been proposed for CO3 chondrites. In view of its simplicity and applicability, the scheme of Scott and Jones (1990) is regarded as the most useful in assigning sub‐types to new CO3 samples.  相似文献   

17.
Abstract— The relative abundance of different compositional types and mass frequency distributions are presented for four meteorite samples (the modern falls, Antarctic finds, Yamato finds and Allan Hills Main Icefield finds). The modern falls sample represents continuous collection of a known number of falls over a short timespan, while the Antarctic samples represent a longer timespan and an unknown number of falls. The Allan Hills Main Icefield sample has many desirable collection characteristics indicating it best represents Antarctic meteorites. By retabulating the modern falls to create a sample with characteristics similar to those of the Allan Hills Main Icefield finds, we can directly compare the two. The mass frequency distributions of Antarctic samples exhibit a tail toward the larger sizes and thus differ from that of the modern falls (which approximates a normal curve). In general, normal and power law models prove to be inadequate to explain the observed mass frequency distributions, possibly because they fail to correctly account for atmospheric and collection effects. Non-parametric statistics show that it is unlikely that the two are good samples of a single steady-state meteoritic complex. In addition, there is an excess in numbers of small H chondrites in Allan Hills Main Icefield finds relative to modern falls which is not easy to explain given modern showerfall rates of occurrence. This supports the view that the delivery of meteoritic material to Earth might be variable over the short timescale represented by these samples.  相似文献   

18.
Acfer 217-A new member of the Rumuruti chondrite group (R)   总被引:1,自引:0,他引:1  
Abstract— Previously, three meteorites from Australia and Antarctica were described as a new chondritic “grouplet” (Carlisle Lakes, Allan Hills (ALH) 85151, Yamato (Y) ?75302; Rubin and Kallemeyn, 1989). This grouplet was classified as the “Carlisle Lakes-type” chondrites (Weisberg et al., 1991). Recently, one Saharan sample and four more Antarctic meteorites were identified to belong to this group (Acfer 217, Y-793575, Y-82002, PCA91002, PCA91241). The latter two are probably paired. With the meteorite Rumuruti, the first fall of this type of chondrite is known (Schulze et al., 1994). We report here on the Saharan meteorite Acfer 217 which has chemical and mineralogical properties very similar to Rumuruti and Carlisle Lakes. All eight members of this group, Rumuruti, Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, and the paired samples PCA91002 and PCA91241 justify the introduction of a new group of chondritic meteorites, the Rumuruti meteorites (R). Acfer 217 is a regolith breccia consisting of up to cm-sized clasts (~33 vol%) embedded in a fine-grained, well-lithified clastic matrix. The most abundant mineral is olivine (~72 vol%), which has a high Fa-content of 37–39 mol%. The major minerals (olivine, low-Ca pyroxene, Ca-pyroxene, and plagioclase) show some compositional variability indicating a slightly unequilibrated nature of the meteorite. Considering the mean olivine composition of Fa37.8 ± 5.7, a classification of Acfer 217 as a R3.8 chondrite would result; however, Acfer 217 is a regolith breccia consisting of clasts of various petrologic types. Therefore, we suggest to classify Acfer 217 as a R3–5 chondrite regolith breccia. The bulk meteorite is very weakly shocked (S2). The bulk composition of Acfer 217 and other R-meteorites show that the R-meteorites are basically chondritic in composition. The pattern of moderately volatile elements is unique in R chondrites; Na and Mn are essentially undepleted, similar to ordinary chondrites, while Zn and Se contents are similar to concentrations in CM chondrites. The oxygen isotopic composition in Acfer 217 is similar to that of Rumuruti, Carlisle Lakes, ALH 85151, and Y-75302. In a δ17O vs. δ18O-diagram, the R-meteorites form a group well resolved from other chondrite groups. Acfer 217 was a meteoroid of common size with a radius between 15–65 cm and with a single stage exposure history. Based on 21Ne, an exposure age of about 35 Ma was calculated.  相似文献   

19.
Our detailed mineralogical, elemental, and isotopic study of the Miller Range (MIL) 07687 meteorite showed that, although this meteorite has affinities to CO chondrites, it also exhibits sufficient differences to warrant classification as an ungrouped carbonaceous chondrite. The most notable feature of MIL 07687 is the presence of two distinct matrix lithologies that result from highly localized aqueous alteration. One of these lithologies is Fe‐rich and exhibits evidence for interaction with water, including the presence of fibrous (dendritic) ferrihydrite. The other lithology, which is Fe‐poor, appears to represent relatively unaltered protolith material. MIL 07687 has presolar grain abundances consistent with those observed in other modestly altered carbonaceous chondrites: the overall abundance of O‐rich presolar grains is 137 ± 3 ppm and the overall abundance of SiC grains is 71 ± 11 ppm. However, there is a large difference in the observed O‐rich and SiC grain number densities between altered and unaltered areas, reflecting partial destruction of presolar grains (both O‐ and C‐rich grains) due to the aqueous alteration experienced by MIL 07687 under highly oxidizing conditions. Detailed coordinated NanoSIMS‐TEM analysis of a large hotspot composed of an isotopically normal core surrounded by a rim composed of 17O‐rich grains is consistent with either original condensation of the core and surrounding grains in the same parent AGB star, or with grain accretion in the ISM or solar nebula.  相似文献   

20.
Abstract— Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865–926 °C), L6 (812–934 °C), and LL6 (874–945 °C) chondrites. Plagioclase temperature estimates are 96–179 °C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 °C), which agrees with previously published oxygen isotope geothermometry, is at least 50 °C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号