首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Mineralogical information recovered from the howardite, eucrite, diogenite (HED) meteorites was employed to reconstruct the history of the parent body and relate it to 4 Vesta. These interpreted crustal evolution processes were then compared to the expected geological features on the surface of a likely proto-planet, 4 Vesta. The original crustal materials of the HED parent body were preserved as mineral grains and lithic clasts, but in many eucrites, Fe/Mg ratios in pyroxenes were homogenized by diffusion after crystallization. The crystallization trend of the protocrust has been deciphered by (1) examining monomict and crystalline samples and using their mineralogical and chemical information to formulate a sequence of crystallization and cooling trends; and by (2) reconstructing the original crust prior to cratering events from lithic clasts and mineral fragments in polymict breccias such as howardites and polymict eucrites. Mineral components are identical, both in the individual HED and in polymict breccias, and no remnants of primitive materials were preserved in the polymict breccias. A layered crust model reconstructed from such breccias consists of an upper crust with extrusive lava-like eucrites that have been brecciated and metamorphosed, diogenite mantle, and cumulate eucrites of varying thickness between them. This model can be used to explain the surface geological features of Vesta observed from the Hubble space telescope. A large crater with diogenitic orthopyroxene at the crater floor is consistent with the deepest diogenitic layer of the layered crust model; and an underlying olivine layer is expected from early crystallized olivine in the crystal fractionation model. The old terrain of eucritic surface materials of Vesta can be howardites, polymict eucrites, or regolith-like eucrites produced from eucrites extruded and impacted on the surface. Partial melting models of eucrites seem to be favored by the rare-earth element (REE) chemistry and experimental studies. Unfortunately, partial melting models have not demonstrated how the HED parent body is converted to a layered crust without producing any metamorphosed primitive material in the layered crust. The origin of cumulate eucrites with systematic variation of textures and chemistries of pyroxene can be explained by the layered crust model with excavation and mixing of trapped liquid. Discovery of basaltic materials with Na-rich plagioclase and augite in iron meteorites, which are the products of partial melting, suggests that eucrites may be unique to a body that underwent large-scale differentiation and metamorphism.  相似文献   

2.
New data are used to confirm the positive correlation between Mg and Cr in howardites and eucrites, and the identity of the Mg/Cr ratio in the two meteorite groups is established, provided Chaves is treated as an anomalous howardite. Macibini, usually classed as a eucrite, has higher contents of Mg and Cr than all but the cumulate eucrites; the suggestion is made, on the basis of its polymict character, the wide compositional range of its constituent clasts, and its bulk chemistry, that it should be re-classified as a howardite. The Mg-Cr relationship in diogenites is one of almost constant Mg but extremely variable Cr. The “average diogenite” plots fairly close to the trend established for the howardites and eucrites, indicative of the genetic link between these three meteorite classes. The silicate fractions of nine mesosiderites studied do not show a close coherence of Mg and Cr. With the exception of Patwar, they contain more Cr than howardites and eucrites, and exhibit greater variation of Cr relative to Mg. The general lack of clear inter-element trends in these silicate fractions suggests that they had a more complex origin and evolution than the silicates of the achondrites. Preliminary results of quantitative computer modeling of major and trace elements in the eucrites indicate that about 32 percent fractional crystallization of a eucritic liquid of the composition of Sioux County yields a residual liquid similar to Nuevo Laredo; the cumulate produced has the approximate composition of the cumulate eucrite Moama. These results are in agreement with the model developed by Consolmagno and Drake (1977), using the rare earth elements, for a corresponding stage in the solidification of an initial eucritic liquid produced by equilibrium partial melting of the source region of the parent body (Stolper, 1977). Plotting of the Ti concentrations of the meteorites studied against their Fe/Fe+Mg ratios supports Stolper's idea that the eucrites and the Mg-rich achondrites do not lie on the same liquid line of descent, and shows that the mesosiderite silicates do not conform to either trend.  相似文献   

3.
Abstract– This work describes two newly discovered eucrite breccias: three presumably paired meteorites, all named Northwest Africa (NWA) 6105, and NWA 6106. For each meteorite, major‐ and minor‐element compositions of minerals were determined using the electron microprobe. Pyroxene Fe‐Mn co‐variations and bulk‐rock oxygen isotope compositions confirm their classification as eucrites. Variations in mineral compositions and textures are attributed to differences in clast types present (i.e., basaltic or cumulate eucrite). The pyroxene compositions support the hypothesis that samples NWA 6105,1; 6105,2; and 6105,3 are paired polymict eucritic breccias, whereas sample NWA 6106 is a monomict basaltic eucritic breccia. Two‐pyroxene geothermometry yields temperatures too low for igneous crystallization. The variation in temperatures among samples suggests that metamorphism occurred prior to brecciation.  相似文献   

4.
We have done petrologic and compositional studies on a suite of polymict eucrites and howardites to better understand regolith processes on their parent asteroid, which we accept is (4) Vesta. Taking into account noble gas results from companion studies, we interpret five howardites to represent breccias assembled from the true regolith: Elephant Moraine (EET) 87513, Grosvenor Mountains (GRO) 95535, GRO 95602, Lewis Cliff (LEW) 85313, and Meteorite Hills (MET) 00423. We suggest that EET 87503 is paired with EET 87513, and thus is also regolithic. Pecora Escarpment (PCA) 02066 is dominated by melt‐matrix clasts, which may have been formed from true regolith by impact melting. These meteorites display a range in eucrite:diogenite mixing ratio from 55:45 to 76:24. There is no correlation between degree of regolith character and Ni content. The Ni contents of howardite, eucrite, and diogenites (HEDs) are mostly controlled by the distribution of coarse chondritic clasts and metal grains, which in some cases resulted from individual, low‐velocity accretion events, rather than extensive regolith gardening. Trace element compositions indicate that the mafic component of HED polymict breccias is mostly basalt similar to main‐group eucrites; Stannern‐trend basaltic debris is less common. Pyroxene compositions show that some trace element‐rich howardites contain abundant debris from evolved basalts, and that cumulate gabbro debris is present in some breccias. The scale of heterogeneity varies considerably; regolithic howardite EET 87513 is more homogeneous than fragmental howardite Queen Alexandra Range (QUE) 97001. Individual samples of a given howardite can have different compositions even at roughly 5 g masses, indicating that obtaining representative meteorite compositions requires multiple or large samples.  相似文献   

5.
Delaney et al. (1983) propose to redefine howardites as basaltic achondrites containing more than 10% of magnesian orthopyroxenite (diogenite) component. Since the 10% requirement is arbitrary and of no genetic significance this redefinition should be rejected and the earlier definition of Score et al. (1982) “Howardites are polymict pyroxene-plagioclase achondrites containing magnesian orthopyroxene” — in any amount — should be retained.  相似文献   

6.
Guy J. Consolmagno 《Icarus》1979,40(3):522-530
The spectral uniqueness of asteroid 4 Vesta has led to suggestions that it is the eucrite parent body. However, there exist other basaltic achondrite types besides eucrites; either they also came from Vesta or else there exist other achondrite parent bodies. Howardites appear to be mixtures of eucrites and diogenites, and mesosiderites mixtures of eucrites or howardites and iron; thus one may infer that all four classes come from the same parent body. The REE patterns of eucrites and diogenites are modeled in order to test this hypothesis; eucrites can be made easily, but the patterns of diogenites are more difficult to match. The other basaltic achondrites are so rare that one cannot argue from statistics of abundances against a disrupted parent body for their origin. Pallasites and most irons likely had an origin separate from eucrites, again in parent bodies since disrupted.  相似文献   

7.
Abstract The 244Pu-fission-136Xe retention ages of howardites, eucrites, and diogenites (HEDs) show that these meteorites have retained Xe since they were formed about 4500 Ma ago. For the Garland diogenite and the Millbillillie eucrite, we obtain fission Xe ages of 4525 ± 40 Ma and 4486 ± 40 Ma, respectively. If Xe isotope data reported by other workers are also considered, we conclude that the monomict equilibrated eucrites Camel Donga, Juvinas, and Millbillillie formed about 40 Ma later than Pasamonte, a polymict unequilibrated eucrite. Stannern, a monomict equilibrated brecciated eucrite, yields a 244Pu-136Xe age of 4442 Ma. The 40K-40Ar retention ages fall, for most HEDs, into the 1000–4000 Ma age range, indicating that 40Ar is generally not well retained. The good retentivity for Xe of HEDs allows us to study primordial trapped Xe in these meteorites. Except for Shalka, in which other authors found Kr and Xe from terrestrial atmospheric contamination only, we present for the first time Kr and Xe isotopic data for diogenites. We studied Ellemeet, Garland, Ibbenbühren, Shalka, and Tatahouine. We show that Tatahouine contains two types of trapped Xe: a terrestrial contamination acquired by an irreversible adsorption process and released at pyrolysis temperatures up to 800 °C, and indigenous primordial Xe released primarily between 800 °C and 1200 °C. The isotopic composition of this primordial Xe is identical to that proposed earlier to be present in primitive achondrites and termed U-Xe or “primitive” Xe, but it has not been directly observed in achondrites until now. This type of primitive Xe is important for understanding the evolution of other Xe reservoirs in the Solar System. Terrestrial atmospheric Xe (corrected for fission Xe and radiogenic Xe from outgassing of the Earth) is related to it by a mass dependent fractionation favoring the heavier Xe isotopes. This primitive Xe is isotopically very similar to solar Xe except for 134Xe and 136Xe. Solar Xe appears to contain an enrichment of unknown origin for these isotopes relative to the primitive Xe.  相似文献   

8.
A newly found polymict eucrite, EETA79006, is described. Lithic clasts are similar to those found in howardites and fall into four groups: fine-grained (aphanitic), coarse-grained, basaltic, and cataclastic. All have eucritic compositions and differ mainly in cooling and deformation histories. Some basaltic clasts cooled faster than others and may be impact melts. Analysis of pyroxene and feldspar in the matrix and in 20 lithic clasts indicates that the matrix was not derived from the observed lithic clast population. This meteorite and similar polymict eucrites may have formed by addition of younger more fractionated lithic clasts to the regolith of the parent body.  相似文献   

9.
Total carbon and nitrogen contents are reported for four howardites, three enstatite achondrites and one hypersthene achondrite. The mean value for eucrites is 650 ppm C and howardites 1440 ppm C. The Haraiya eucrite has an anomalously high carbon content The nitrogen contents range between 24 and 66 ppm N. The mean N value for eucrites is 36 ppm N and for the howardites 51 ppm N.  相似文献   

10.
The Dawn spacecraft mission has provided extensive new and detailed data on Vesta that confirm and strengthen the Vesta–howardite–eucrite–diogenite (HED) meteorite link and the concept that Vesta is differentiated, as derived from earlier telescopic observations. Here, we present results derived by newly calibrated spectra of Vesta. The comparison between data from the Dawn imaging spectrometer—VIR—and the different class of HED meteorites shows that average spectrum of Vesta resembles howardite spectra. Nevertheless, the Vesta spectra at high spatial resolution reveal variations in the distribution of HED‐like mineralogies on the asteroid. The data have been used to derive HED distribution on Vesta, reported in Ammannito et al. (2013), and to compute the average Vestan spectra of the different HED lithologies, reported here. The spectra indicate that, not only are all the different HED lithologies present on Vesta, but also carbonaceous chondritic material, which constitutes the most abundant inclusion type found in howardites, is widespread. However, the hydration feature used to identify carbonaceous chondrite material varies significantly on Vesta, revealing different band shapes. The characteristic of these hydration features cannot be explained solely by infalling of carbonaceous chondrite meteorites and other possible origins must be considered. The relative proportion of HEDs on Vesta's surface is computed, and results show that most of the vestan surface is compatible with eucrite‐rich howardites and/or cumulate or polymict eucrites. A very small percentage of surface is covered by diogenite, and basaltic eucrite terrains are relatively few compared with the abundance of basaltic eucrites in the HED suite. The largest abundance of diogenitic material is found in the Rheasilvia region, a deep basin, where it clearly occurs below a basaltic upper crust. However, diogenite is also found elsewhere; although the depth to diogenite is consistent with one magma ocean model, its lateral extent is not well constrained.  相似文献   

11.
We report on the petrography and mineralogy of five Yamato polymict eucrites to better constrain the formation and alteration of crustal material on differentiated asteroids. Each sample consists of different lithic clasts that altogether form four dominant textures and therefore appear to originate from closely related petrological areas within Vesta′s crust. The textures range from subophitic to brecciated, porphyritic, and quench‐textured, that differ from section to section. Comparison with literature data for these samples is therefore difficult, which stresses that polymict eucrites are extremely complex in their petrography and investigation of only one thick section may not be representative for the host rock. We also show that sample Y‐793548 consists of more than one lithic unit and must therefore be classified as polymict instead of monomict. The variety and nature of lithic textures in the investigated Yamato meteorites indicate shock events, intense post‐magmatic thermal annealing, and secondary alteration. These postmagmatic features occur in different intensities, varying from clast to clast or among coexisting mineral fragments on a small, local scale. Several clasts within the eucrites studied have been modified by late‐stage alteration processes that caused deposition of Fe‐rich olivine and Fe enrichment along cracks crosscutting pyroxene crystals. However, formation of these secondary phases seems to be independent of the degree of thermal metamorphism observed within every type of clast, which would support a late‐stage metasomatism model for their formation.  相似文献   

12.
Abstract— Cumulate eucrite, noncumulate eucrite, and diogenite meteorites are considered to have come from the crust of one (or similar) parent asteroid. Howardites are regarded as regolith breccias of eucrites and diogenites, and polymict eucrites are regarded as polymict breccias of eucrites. These polymict breccias show many textural and chemical features. In order to gain a better understanding of the origin of polymict breccias and the origin of their components, we investigated four polymict breccias, Yamato (Y)-791439, Y-791192, Y-82009, and Y-82049 with a scanning electron microscope (SEM) equipped with a chemical mapping system, and by electron probe microanalysis (EPMA). We analyzed all pyroxene grains with chemical maps, classified them by chemical composition, and observed their chemistry and mineralogy in detail. The characteristics of pyroxenes suggest that the polymict breccias were generated by gathering locally ordinary eucrites and cumulate eucrites. The chemical-evolutionary features of the pyroxenes (such as homogenization, chemical zoning, and exsolution lamellae) suggest that there were at least two long annealing events and one short (or low-temperature) annealing event, separated by mixing events. Local heterogeneity on the asteroidal crust is also suggested.  相似文献   

13.
Abstract— Many lines of evidence indicate that meteorites are derived from the asteroid belt but, in general, identifying any meteorite class with a particular asteroid has been problematical. One exception is asteroid 4 Vesta, where a strong case can be made that it is the ultimate source of the howardite‐eucrite‐diogenite (HED) family of basaltic achondrites. Visible and near‐infrared reflectance spectra first suggested a connection between Vesta and the basaltic achondrites. Experimental petrology demonstrated that the eucrites (the relatively unaltered and unmixed basaltic achondrites) were the product of approximately a 10% melt. Studies of siderophile element partitioning suggested that this melt was the residue of an asteroidal‐scale magma ocean. Mass balance considerations point to a parent body that had its surface excavated, but remains intact. Modern telescopic spectroscopy has identified kilometer‐scale “Vestoids” between Vesta and the 3:1 orbit‐orbit resonance with Jupiter. Dynamical simulations of impact into Vesta demonstrate the plausibility of ejecting relatively unshocked material at velocities consistent with these astronomical observations. Hubble Space Telescope images show a 460 km diameter impact basin at the south pole of Vesta. It seems that nature has provided multiple free sample return missions to a unique asteroid. Major challenges are to establish the geologic context of the HED meteorites on the surface of Vesta and to connect the remaining meteorites to specific asteroids.  相似文献   

14.
Scott A. Sandford 《Icarus》1984,60(1):115-126
Infrared transmission spectra from 53 meteorites in the spectral range from 2.5 to 25 μm were measured to permit comparisons with data of astronomical objects that are potential meteorite sources. Data were taken for 14 carbonaceous chondrites, 5 LL ordinary chondrites, 6 L ordinary chondrites, 10 H ordinary chondrites, 1 enstatite chondrite, 4 aubrites, 3 eucrites, 4 howardites, 1 diogenite, 1 mesosiderite, 2 nakhlites, 1 shergottite, and the anomalous achondrite Angra dos Reis. The CO and CV carbonaceous chondrites have spectra similar to each other, with 10-μm features characteristic of olivine. The CM carbonaceous chondrites have distinctive 10-μm features that are attributed to layer lattice silicates. Members of both the CI and CR classes have spectra distinct from those of other carbonaceous chondrites. The LL, L, and H ordinary chondrites have spectra that match those of olivine and pyroxene mixtures. The enstatite chondrites and enstatite achondrites (aubrites) all exhibit spectra diagnostic of the pyroxene enstatite. The angrite, howardites, aucrites, nakhlites, shergottite, and diogenite all have similar spectra also dominated by pyroxene. The single mesosiderite examined had a spectrum distinct from all the other meteorites.  相似文献   

15.
The elements Na, Mg, Al, Si, S, K, Ca, (V), Cr, Mn, Fe, Co and Ni have been determined in 19 Yamato meteorites by spark source mass spectrometry. For comparison the chondrites Allan Hills 7603, Mt Baldr (b) and Holbrook and the achondrites Johnstown, Pasamonte and Stannern also have been analyzed by the same method. By virtue of their chemical composition the Yamato meteorites 74002 and 74144 prove to be ordinary chondrites of type L; 74001, 74103, 74155 and 74156 are ordinary chondrites of type H; 74662 is a carbonaceous chondrite; Yamato 74010, 74011, 74016, 74037, 74097, 74125 and 74136 are diogenites; Yamato 7308(1) is a howardite; and Yamato 74450 is a eucrite. This agrees with earlier classifications based on petrological and mineralogical arguments (Nagata, 1978; Motylewski, 1978). For the chondrites Yamato 74002, 74106, 74144 and the diogenite 74125, however, no previous classifications could be found in the literature. In a Mg-Al diagram the eucrites, the howardites, the diogenites and the ureilites fall into characteristic fields. This enabled not only the classification of the Yamato achondrites investigated in this paper but also confirmed the previous identification of Yamato 74123 as a ureilite (Hintenberger et al., 1978). A very high chromium content is characteristic of some Yamato diogenites, especially Yamato 74037 (3.4%). Chromium and vanadium are positively correlated in the achondrites investigated.  相似文献   

16.
Abstract– Analysis of the mineralogy, isotopic, and bulk compositions of the eucrite meteorites is imperative for understanding their origin on the asteroid 4 Vesta, the proposed parent body of the HED meteorites. We present here the petrology, mineral compositions, and bulk chemistry of several lithic components of the new brecciated basaltic eucrite Northwest Africa (NWA) 3368 to determine if all the lithologies reflect formation from one rock type or many rock types. The meteorite has three main lithologies: coarse‐ and fine‐grained clasts surrounded by a fine‐grained recrystallized silicate matrix. Silicate compositions are homogeneous, and the average rare earth element pattern for NWA 3368 is approximately 10× CI chondrites with a slight negative Eu anomaly. Major and trace element data place NWA 3368 with the Main Group‐Nuevo Laredo trend. High‐Ti chromites with ilmenite exsolution lamellae provide evidence of NWA 3368’s history of intense metamorphism. We suggest that this meteorite underwent several episodes of brecciation and metamorphism, similar to that proposed by Metzler et al. (1995) . We conclude that NWA 3368 is a monomict basaltic eucrite breccia related to known eucrites in texture and in mineral, bulk, and oxygen isotopic composition.  相似文献   

17.
Abstract— Polymict ureilites contain various mineral and lithic clasts not observed in monomict ureilites, including plagioclase, enstatite, feldspathic melt clasts and dark inclusions. This paper investigates the microdistributions and petrogenetic implications of rare earth elements (REEs) in three polymict ureilites (Elephant Moraine (EET) 83309, EET 87720 and North Haig), focusing particularly on the mineral and lithic clasts not found in monomict ureilites. As in monomict ureilites, olivine and pyroxene are the major heavy (H)REE carriers in polymict ureilites. They have light (L)REE‐depleted patterns with little variation in REE abundances, despite large differences in major element compositions. The textural and REE characteristics of feldspathic melt clasts in the three polymict ureilites indicate that they are most likely shocked melt that sampled the basaltic components associated with ureilites on their parent body. Simple REE modeling shows that the most common melt clasts in polymict ureilites can be produced by 20–30% partial melting of chondritic material, leaving behind a ureilitic residue. The plagioclase clasts, as well as some of the high‐Ca pyroxene grains, probably represent plagioclase‐pyroxene rock types on the ureilite parent body. However, the variety of REE patterns in both plagioclase and melt clasts cannot be the result of a single igneous differentiation event. Multiple processes, probably including shock melting and different sources, are required to account for all the REE characteristics observed in lithic and mineral clasts. The C‐rich matrix in polymict ureilites is LREE‐enriched, like that in monomict ureilites. The occurrence of Ce anomalies in C‐rich matrix, dark inclusions and the presence of the hydration product, iddingsite, imply significant terrestrial weathering. A search for 26Mg excesses, from the radioactive decay of 26Al, in the polymict ureilite EET 83309 was negative.  相似文献   

18.
Abstract— Eucrite meteorites are igneous rocks that derived from a large asteroid, probably 4 Vesta. Past studies have shown that after most eucrites formed, they underwent metamorphism in temperatures up to ≥800°C. Much later, many were brecciated and heated by large impacts into the parent body surface. The less common basaltic, unbrecciated eucrites also formed near the surface but, presumably, escaped later brecciation, while the cumulate eucrites formed at depths where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new 39Ar‐40Ar ages for 9 eucrites classified as basaltic but unbrecciated, 6 eucrites classified as cumulate, and several basaltic‐brecciated eucrites. Precise Ar‐Ar ages of 2 cumulate eucrites (Moama and EET 87520) and 4 unbrecciated eucrites give a tight cluster at 4.48 ± 0.02 Gyr (not including any uncertainties in the flux monitor age). Ar‐Ar ages of 6 additional unbrecciated eucrites are consistent with this age within their relatively larger age uncertainties. By contrast, available literature data on Pb‐Pb isochron ages of 4 cumulate eucrites and 1 unbrecciated eucrite vary over 4.4–4.515 Gyr, and 147Sm‐143Nd isochron ages of 4 cumulate and 3 unbrecciated eucrites vary over 4.41–4.55 Gyr. Similar Ar‐Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as was previously proposed. We suggest that these cumulate and unbrecciated eucrites resided at a depth where parent body temperatures were sufficiently high to cause the K‐Ar and some other chronometers to remain as open diffusion systems. From the strong clustering of Ar‐Ar ages at ?4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event ?4.48 Gyr ago, which quickly cooled the samples and started the K‐Ar chronometer. A large (?460 km) crater postulated to exist on Vesta may be the source of these eucrites and of many smaller asteroids thought to be spectrally or physically associated with Vesta. Some Pb‐Pb and Sm‐Nd ages of cumulate and unbrecciated eucrites are consistent with the Ar‐Ar age of 4.48 Gyr, and the few older Pb‐Pb and Sm‐Nd ages may reflect an isotopic closure before the large cratering event. One cumulate eucrite gives an Ar‐Ar age of 4.25 Gyr; 3 additional cumulate eucrites give Ar‐Ar ages of 3.4–3.7 Gyr; and 2 unbrecciated eucrites give Ar‐Ar ages of ?3.55 Gyr. We attribute these younger ages to a later impact heating. Furthermore, the Ar‐Ar impact‐reset ages of several brecciated eucrites and eucritic clasts in howardites fall within the range of 3.5–4.1 Gyr. Among these, Piplia Kalan, the first eucrite to show evidence for extinct 26Al, was strongly impact heated ?3.5 Gyr ago. When these data are combined with eucrite Ar‐Ar ages in the literature, they confirm that several large impact heating events occurred on Vesta between ?4.1–3.4 Gyr ago. The onset of major impact heating may have occurred at similar times for both Vesta and the moon, but impact heating appears to have persisted for a somewhat later time on Vesta.  相似文献   

19.
We investigated several olivine-bearing, medium-grained, ophitic to subophitic eucritic clasts from three different Antarctic howardites. Based on grain size (0.5–2 mm), these clasts could represent intrusive igneous units. Based on mineral composition (pyroxene and plagioclase), they are similar to basaltic eucrites. Elemental concentrations of the major silicates and bulk mg#, however, range from those known for basaltic eucrites to those found in cumulate eucrites. Recognizable cumulus phases are absent. Conservatively speaking, the clasts examined may simply classify as relatively coarse-grained unequilibrated basaltic eucrites. Alternatively, at least one of the clasts showing intermediate grain size and a relatively primitive chemical composition (mg# 50) may sample a rock type that could be genetically placed between the basaltic and cumulate eucrite lines of origin. A minor, yet genetically meaningful common feature of the clasts studied is the occurrence of fayalitic olivine. Two distinct categories exist. They are (1) fine veinlets exclusively percolating through pyroxene and (2) more substantial (up to 100 μm wide) veins and/or interstitial deposits. Only the fine veinlets also contain variable amounts of anorthite, ilmenite, and troilite. Although both types of olivine are ferroan, textural aspects suggest distinct paths of generation. The fine veinlets are best explained by decomposition of relatively FeO-rich, heterogeneous, and locally metastable pyroxene, caused in situ by impact heating and subsequent fast cooling. The wider, often very ragged-looking monomineralic olivine fillings, on the other hand, may represent the iron-enriched portion of a highly fractionated magma.  相似文献   

20.
Abstract— Approximately 275 mineral species have been identified in meteorites, reflecting diverse redox environments, and, in some cases, unusual nebular formation conditions. Anhydrous ordinary, carbonaceous and R chondrites contain major olivine, pyroxene and plagioclase; major opaque phases include metallic Fe-Ni, troilite and chromite. Primitive achondrites are mineralogically similar. The highly reduced enstatite chondrites and achondrites contain major enstatite, plagioclase, free silica and kamacite as well as nitrides, a silicide and Ca-, Mg-, Mn-, Na-, Cr-, K- and Ti-rich sulfides. Aqueously altered carbonaceous chondrites contain major amounts of hydrous phyllosilicates, complex organic compounds, magnetite, various sulfates and sulfides, and carbonates. In addition to kamacite and taenite, iron meteorites contain carbides, elemental C, nitrides, phosphates, phosphides, chromite and sulfides. Silicate inclusions in IAB/IIICD and IIE iron meteorites consist of mafic silicates, plagioclase and various sulfides, oxides and phosphates. Eucrites, howardites and diogenites have basaltic to orthopyroxenitic compositions and consist of major pyroxene and calcic plagioclase and several accessory oxides. Ureilites are made up mainly of calcic, chromian olivine and low-Ca clinopyroxene embedded in a carbonaceous matrix; accessory phases include the C polymorphs graphite, diamond, lonsdaleite and chaoite as well as metallic Fe-Ni, troilite and halides. Angrites are achondrites rich in fassaitic pyroxene (i.e., Al-Ti diopside); minor olivine with included magnesian kirschsteinite is also present. Martian meteorites comprise basalts, lherzolites, a dunite and an orthopyroxenite. Major phases include various pyroxenes and olivine; minor to accessory phases include various sulfides, magnetite, chromite and Ca-phosphates. Lunar meteorites comprise mare basalts with major augite and calcic plagioclase and anorthositic breccias with major calcic plagioclase. Several meteoritic phases were formed by shock metamorphism. Martensite (α2-Fe,Ni) has a distorted body-centered-cubic structure and formed by a shear transformation from taenite during shock reheating and rapid cooling. The C polymorphs diamond, lonsdaleite and chaoite formed by shock from graphite. Suessite formed in the North Haig ureilite by reduction of Fe and Si (possibly from olivine) via reaction with carbonaceous matrix material. Ringwoodite, the spinel form of (Mg,Fe)2SiO4, and majorite, a polymorph of (Mg,Fe)SiO3 with the garnet structure, formed inside shock veins in highly shocked ordinary chondrites. Secondary minerals in meteorite finds that formed during terrestrial weathering include oxides and hydroxides formed directly from metallic Fe-Ni by oxidation, phosphates formed by the alteration of schreibersite, and sulfates formed by alteration of troilite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号