首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk chemical analyses of six E-chondrites (Daniel's kuil, Khairpur, Kota Kota, Saint-Sauveur, South Oman and St Mark's) are given, together with partial analyses of a further five (Blithfield, Hvittis, Indarch, Jajh deh Kot Lalu and Pillistfer). The distribution of some normally lithophile elements (Al, Ca, Cr, K, Mg, Na, P and Ti) between silicate and sulphide groups of minerals was determined using the selective attack by dry chlorine (350°C) on magnetically separated fractions. Subdivision of the E-chondrites into types I and II (Yavnel;, 1963; Anders, 1964) is accepted and it is shown using chemical data that St Mark's and Saint-Sauveur should be included in type I. Sulphides contribute an unexpectedly high proportion of several elements to the bulk: e.g. Ca (av. 88.5% type I, 66.3% type II); Ti(av. 77.1% type I, 84.8% type II) and P as phosphide (av. 44.4% type I, > 83.2% type II). The proportion of Ti contributed to the bulk composition by the sulphides in types I and II increases with increae in ‘thermal metamorphic effect’ (Easton, 1983b) within each type. There is marked variability in the relative abundances of metal, phosphide, silicate and sulphide among the members of each type in keeping with their aggregate nature. The chemical composition of the ‘silicate’ and ‘sulphide’ in type IE-chondrites differs from that in type II (e.g. CaO in the silicates, Mg in the bulk sulphides) which therefore precludes the isochemical evolution of all E-chondrites from a common parent material. Partition of Ti between silicate and sulphide groups of minerals indicates that types I and II E-chondrites originated in separate, chemically distinct bodies.  相似文献   

2.
The bulk composition of metal (kamacite plus perryite) was determined in eleven E-chondrites and eight aubrites. The data are compatible with the subdivision of the E-chondrites into two groups (Yavnel, 1963; Anders, 1964), St Mark's and St Sauveur belonging to type I (Easton, 1985). The Ni content of kamacite plus perryite in Kota Kota (5.49%) is within the range covered by the remaining E-chondrites. Normative perryite, (Fe, Ni)x(Si,P)y constitutes 2.1% of Kota Kota and 2.7% of South Oman. The Ni content in the bulk metal of Aubres, Bishopville, Norton County and Peña Blanca Spring is about half the average Ni content in the metal of E-chondrites or the remaining aubrites (Bustee, Khor Temiki, Mayo Belwa and Shallowater). High Ga/Ni and Ge/Ni ratios distinguish the metal in E-chondrites and aubrites from that in ordinary chondrites. In a large metal grain from Aubres perryite formed on reheating, whereas in one from Khor Temiki there is evidence of shock and displacement of fragmented schreibersite (rhabdite). Thirty-eight metal grains (< 1.5 mm diameter) from Khor Temiki have a wide compositional range like that in Mayo Belwa (Graham, 1978). In Shallowater the distribution of Ni in the metal is bimodal (5.2 and 11.6%) and there is evidence of rapid cooling. The composition of both bulk metal and individual grains in aubrites makes it unlikely that they represent residual metal trapped during magmatic differentiation and/or fractional crystallization of E6 material. Compositional differences between metal grains strongly indicate that the aubrites are polymict breccias.  相似文献   

3.
The Mayo Belwa meteorite (an aubrite) contains discrete metal grains ranging in size from less than 1 μm to 300 μm across, and schreibersites up to 25 μm across. Intergrowths of metal and schreibersite also occur. These phases are distributed heterogeneously throughout the meteorite and are present both in the fine-grained matrix and within silicate crystals. The concentrations of the elements Ni, Fe, Si, Co, P, were determined in grains larger than 4 μm across. Most metal grains have 1–8% Ni, the total range being 0.8–23.5% Ni. The 1–8% Ni metal may be sub-divided into two compositional groups, one relatively compact, having 1–3.8% Ni, 0.1-0.3% Si; the second having a much greater range in both Ni and Si (~ 4–12%, 0.1-1.2% respectively). There is no zonation in the Si contents of individual grains. Neither the size of the grains nor their environment correlates with their Ni or Si contents, though there is a tendency for low Ni, low Si metal to be within enstatite crystals. Schreibersite (8–14.4% Ni) occurs as isolated grains or associated with low-Ni metal; it generally contains less than 500 ppm Si. The wide range in the Ni contents of the metal distinguishes it from the metal of the E-chondrites, and argues against an E-chondrite source for this metal.  相似文献   

4.
Abstract— We present a detailed petrographic and electron microprobe study of metal grains and related opaque minerals in the chondrule interiors and rims of the Bishunpur (LL3.1) ordinary chondrite. There are distinct differences between metal grains that are completely encased in chondrule interiors and those that have some portion of their surface exposed outside of the chondrule boundary, even though the two types of metal grains can be separated by only a few microns. Metal grains in chondrule interiors exhibit minor alteration in the form of oxidized P‐, Cr‐, and Si‐bearing minerals. Metal grains at chondrule boundaries and in chondrule rims are extensively altered into troilite and fayalite. The results of this study suggest that many metal grains in Bishunpur reacted with a type‐I chondrule melt and incorporated significant amounts of P, Cr, and Si. As the system cooled, some metal oxidation occurred in the chondrule interior, producing metal‐associated phosphate, chromite, and silica. Metal that migrated to chondrule boundaries experienced extensive corrosion as a result of exposure to the external atmosphere present during chondrule formation. It appears that chondrule‐derived metal and its corrosion products were incorporated into the fine‐grained rims that surround many type‐I chondrules, contributing to their Fe‐rich compositions. We propose that these fine‐grained rims formed by a combination of corrosion of metal expelled from the chondrule interior and accretion of fine‐grained mineral fragments and microchondrules.  相似文献   

5.
Abstract— Plagioclase‐rich chondrules (PRCs) in the reduced CV chondrites Efremovka, Leoville, Vigarano and Grosvenor Mountains (GRO) 94329 consist of magnesian low‐Ca pyroxene, Al‐Ti‐Cr‐rich pigeonite and augite, forsterite, anorthitic plagioclase, FeNi‐metal‐sulfide nodules, and crystalline mesostasis composed of silica, anorthitic plagioclase and Al‐Ti‐Cr‐rich augite. The silica grains in the mesostases of the CV PRCs are typically replaced by hedenbergitic pyroxenes, whereas anorthitic plagioclase is replaced by feldspathoids (nepheline and minor sodalite). Some of the PRCs contain regions that are texturally and mineralogically similar to type I chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Several PRCs are surrounded by igneous rims or form independent compound objects. Twelve PRCs contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, high‐Ca pyroxene, ± forsterite, and ± Al‐rich low‐Ca pyroxene. Anorthite of these CAIs is generally more heavily replaced by feldspathoids than anorthitic plagioclase of the host chondrules. This suggests that either the alteration predated formation of the PRCs or that anorthite of the relic CAIs was more susceptible to the alteration than anorthitic plagioclase of the host chondrules. These observations and the presence of igneous rims around PRCs and independent compound PRCs suggest that the CV PRCs may have had a complex, multistage formation history compared to a more simple formation history of the CR PRCs. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the PRCs suggests that these chondrules could not have been produced by volatilization of ferromagnesian chondrule precursors or by melting of refractory materials only. We infer instead that PRCs in carbonaceous chondrites formed by melting of the reduced chondrule precursors (magnesian olivine and pyroxene, FeNi‐metal) mixed with refractory materials (relic CAIs) composed of anorthite, spinel, high‐Ca pyroxene, and forsterite. The mineralogical, chemical and textural similarities of the PRCs in several carbonaceous chondrite groups (CV, CO, CH, CR) and common presence of relic CAIs in these chondrules suggest that PRCs may have formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated.  相似文献   

6.
The Earth's extraterrestrial dust flux includes a wide variety of dust particles that include FeNi metallic grains. During their atmospheric entry iron micrometeoroids melt and oxidize to form cosmic spherules termed I‐type spherules. These particles are chemically resistant and readily collected by magnetic separation and are thus the most likely micrometeorites to be recovered from modern and ancient sediments. Understanding their behavior during atmospheric entry is crucial in constraining their abundance relative to other particle types and the nature of the zodiacal dust population at 1 AU. This article presents numerical simulations of the atmospheric entry heating of iron meteoroids to investigate the abundance and nature of these materials. The results indicate that iron micrometeoroids experience peak temperatures 300–800 K higher than silicate particles explaining the rarity of unmelted iron particles which can only be present at sizes of <50 μm. The lower evaporation rates of liquid iron oxide leads to greater survival of iron particles compared with silicates, which enhances their abundance among micrometeorites by a factor of 2. The abundance of I‐types is shown to be broadly consistent with the abundance and size of metal in ordinary chondrites and the current day flux of ordinary chondrite‐derived MMs arriving at Earth. Furthermore, carbonaceous asteroids and cometary dust are suggested to make negligible contributions to the I‐type spherule flux. Events involving such objects, therefore, cannot be recognized from I‐type spherule abundances in the geological record.  相似文献   

7.
Revised photometric data are used to compare the light and colour curves of type I and type II supernovae (SNe I, SNe II); their statistical properties are also compared. No significant difference between SNe I and SNe II has been found in their radial distribution and frequency of outbursts in spiral galaxies. The comparison of light and colour curves reveals several features common to both types and the possibility of transition between types.  相似文献   

8.
We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h?1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.  相似文献   

9.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

10.
We performed a LA-ICP-MS study of refractory lithophile trace elements in 32 individual objects selected from a single section of the reduced CV3 chondrite Leoville. Ingredients sampled include ferromagnesian type I and II chondrules, Al-rich chondrules (ARCs), calcium-aluminum-rich inclusions (CAIs), a single amoeboid olivine aggregate (AOA), and matrix. The majority of rare earth element (REE) signatures identified are either of the category “group II” or they are relatively flat, i.e., more or less unfractionated. Data derived for bulk Leoville exhibit characteristics of the group II pattern. The bulk REE inventory is essentially governed by those of CAIs (group II), ARCs (flat or group II), type I chondrules (about 90% flat, 10% group II), and matrix (group II). Leoville matrix also shows a superimposed positive Eu anomaly. The excess in Eu is possibly due to terrestrial weathering. The group II pattern, however, testifies to volatility-controlled fractional condensation from a residual gas of solar composition at still relatively high temperature. In principle, this signature (group II) is omnipresent in all types of constituents, suggesting that the original REE carrier of all components was CAI-like dust. In addition, single-element anomalies occasionally superimposing the group II signature reveal specific changes in redox conditions. We also determined the bulk chemical composition of all objects studied. For Mg/Si, Mg/Fe, and Al/Ca, Leoville's main ingredients—type I chondrules and matrix—display a complementary relationship. Both components probably formed successively in the same source region.  相似文献   

11.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   

12.
Abstract— Anorthite‐rich chondrules in CR and CH carbonaceous chondrites consist of magnesian low‐Ca pyroxene and forsterite phenocrysts, FeNi‐metal nodules, interstitial anorthite, Al‐Ti‐Cr‐rich low‐Ca and high‐Ca pyroxenes, and crystalline mesostasis composed of silica, anorthite and high‐Ca pyroxene. Three anorthite‐rich chondrules contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, ±Al‐diopside, and ± forsterite. A few chondrules contain regions which are texturally and mineralogically similar to magnesian (type I) chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Anorthite‐rich chondrules in CR and CH chondrites are mineralogically similar to those in CV and CO carbonaceous chondrites, but contain no secondary nepheline, sodalite or ferrosilite. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the anorthite‐rich chondrules suggest that these chondrules could not have been produced by volatilization of the ferromagnesian chondrule precursors or by melting of the refractory materials only. We infer instead that anorthite‐rich chondrules in carbonaceous chondrites formed by melting of the reduced chondrule precursors (olivine, pyroxenes, FeNi‐metal) mixed with the refractory materials, including relic CAIs, composed of anorthite, spinel, high‐Ca pyroxene and forsterite. The observed mineralogical and textural similarities of the anorthite‐rich chondrules in several carbonaceous chondrite groups (CV, CO, CH, CR) may indicate that these chondrules formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated. This may explain the relative enrichment of anorthite‐rich chondrules in 16O compared to typical ferromagnesian chondrules (Russell et al., 2000).  相似文献   

13.
Abstract– Chondrule compositions suggest either ferroan precursors and evaporation, or magnesian precursors and condensation. Type I chondrule precursors include granoblastic olivine aggregates (planetary or nebular) and fine‐grained (dustball) precursors. In carbonaceous chondrites, type I chondrule precursors were S‐free, while type II chondrules have higher Fe/Mn than in ordinary chondrites. Many type II chondrules contain diverse forsteritic relicts, consistent with polymict dustball precursors. The relationship between finer and coarser grained type I chondrules in ordinary chondrites suggests more evaporation from more highly melted chondrules. Fe metal in type I, and Na and S in type II chondrules indicate high partial pressures in ambient gas, as they are rapidly evaporated at canonical conditions. The occurrence of metal, sulfide, or low‐Ca pyroxene on chondrule rims suggests (re)condensation. In Semarkona type II chondrules, Na‐rich olivine cores, Na‐poor melt inclusions, and Na‐rich mesostases suggest evaporation followed by recondensation. Type II chondrules have correlated FeO and MnO, consistent with condensation onto forsteritic precursors, but with different ratios in carbonaceous chondrites and ordinary chondrites, indicating different redox history. The high partial pressures of lithophile elements require large dense clouds, either clumps in the protoplanetary disk, impact plumes, or bow shocks around protoplanets. In ordinary chondrites, clusters of type I and type II chondrules indicate high number densities and their similar oxygen isotopic compositions suggest recycling together. In carbonaceous chondrites, the much less abundant type II chondrules were probably added late to batches of type I chondrules from different O isotopic reservoirs.  相似文献   

14.
Platinum group element (PGE) concentrations have been determined in situ in ordinary chondrite kamacite and taenite grains via laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). Results demonstrate that PGE concentrations in ordinary chondrite metal (kamacite and taenite) are similar among the three ordinary chondrite groups, in contrast to previous bulk metal studies in which PGE concentrations vary in the order H < L < LL. PGE concentrations are higher in taenite than kamacite, consistent with preferential PGE partitioning into taenite. PGE concentrations vary between and within metal grains, although average concentrations in kamacite broadly agree with results from bulk studies. The variability of PGE concentrations in metal decreases with increasing petrologic type; however, variability is still evident in most type six ordinary chondrites, suggesting that equilibration of PGEs does not occur between metal grains, but rather within individual metal grains via self‐diffusion during metamorphism. The constant average PGE concentrations within metal grains across different ordinary chondrite groups are consistent with the formation of metal via nebular condensation prior to the accretion of ordinary chondrite parent bodies. Post‐condensation effects, including heating during chondrule‐formation events, may have affected some element ratios, but have not significantly affected average metal PGE concentrations.  相似文献   

15.
We have investigated the correlations among color, morphology and luminosity for all LRGs, cut I LRGs, cut II LRGs, and Main galaxies that are also classified as LRGs. It is found that the morphology of LRGs is tightly correlated with luminosity. The rest-frame u-g color of cut I LRGs and cut II LRGs is nearly independent of luminosity, but the color of Main galaxies is correlated with luminosity. For cut I LRGs and Main galaxies, the early type proportion apparently changes with color: at the rest-frame u-g < 1.3 it increases strongly with increasing color, while at the rest-frame u-g > 1.3 it decreases with increasing color. We also notice that the morphology of cut II LRGs is only a weak function of color. Published in Astrofizika, Vol. 50, No. 3, pp. 335–345 (August 2007).  相似文献   

16.
Abstract– The Almahata Sitta meteorite is the first case of recovered extraterrestrial material originating from an asteroid that was detected in near Earth space shortly before entering and exploding in the high atmosphere. The aims of our project within the 2008 TC3 consortium were investigating Almahata Sitta’s (AS) magnetic signature, phase composition and mineralogy, focussing on the opaque minerals, and gaining new insights into the magnetism of the ureilite parent body (UPB). We report on the general magnetic properties and behavior of Almahata Sitta and try to place the results in context with the existing data set on ureilites and ureilite parent body models. The magnetic signature of AS is dominated by a set of low‐Ni kamacites with large grain sizes. Additional contributions come from micron‐sized kamacites, suessite, (Cr) troilite, and daubreelite, mainly found in the olivine grains adjacent to carbon‐rich veins. Our results show that the paleomagnetic signal is of extraterrestrial origin as can be seen by comparing with laboratory produced magnetic records (IRM). Four types of kamacite (I–IV) have been recognized in the sample. The elemental composition of the ureilite vein metal Kamacite I (particularly Co) clearly differs from the other kamacites (II‐IV), which are considered to be indigenous. Element ratios of kamacite I indicate that it was introduced into the UPB by an impactor, supporting the conclusions of Gabriel and Pack (2009) .  相似文献   

17.
We investigate the extinction curves of young galaxies in which dust is supplied from Type II supernovae (SNe II) and/or pair instability supernovae (PISNe). We adopt Nozawa et al. (2003) for compositions and size distribution of grains formed in SNe II and PISNe. We find that the extinction curve is quite sensitive to internal metal mixing in supernovae (SNe). The extinction curves predicted from the mixed SNe are dominated by SiO2 and are characterized by a steep rise from infrared to ultraviolet (UV). The dust from unmixed SNe shows a shallower extinction curve, because of the contribution from large-sized (∼0.1 μm) Si grains. However, the progenitor mass is important in unmixed SNe II: if the progenitor mass is smaller than  ∼20 M  , the extinction curve is flat in UV; otherwise, the extinction curve rises towards the short wavelength. The extinction curve observed in a high-redshift quasar  ( z = 6.2)  favours the dust production by unmixed SNe II. We also provide some useful observational quantities, so that our model might be compared with future high- z extinction curves.  相似文献   

18.
We present results from observations of H110 α recombination-line emission at 4.874 GHz and the related 4.8-GHz continuum emission towards the Carina nebula using the Australia Telescope Compact Array. These data provide information on the velocity, morphology and excitation parameters of the ionized gas associated with the two bright H  ii regions within the nebula, Car I and Car II. They are consistent with both Car I and Car II being expanding ionization fronts arising from the massive star clusters Trumpler 14 and Trumpler 16, respectively. The overall continuum emission distribution at 4.8 GHz is similar to that at lower frequencies. For Car I, two compact sources are revealed that are likely to be young H  ii regions associated with triggered star formation. These results provide the first evidence of ongoing star formation in the northern region of the nebula. A close association between Car I and the molecular gas is consistent with a scenario in which Car I is currently carving out a cavity within the northern molecular cloud. The complicated kinematics associated with Car II point to expansion from at least two different centres. All that is left of the molecular cloud in this region are clumps of dense gas and dust which are likely to be responsible for shaping the striking morphology of the Car II components.  相似文献   

19.
The mechanism by which olivine grains became embedded within iron‐nickel alloy in pallasite meteorites continues to be a matter of scientific debate. Geochemical and textural observations have failed to fully elucidate the origin and history of the olivine crystals; however, little research attention has been devoted to their crystallographic orientations within the metal matrix. Using electron backscatter diffraction, we have collected crystallographic orientation data for 296 crystals within ~65 cm2 sample surface from Springwater. Though no global crystallographic preferred orientation exists, very low misorientations are observed among [100] axes of olivine crystals within specific texturally defined domains. Combined with a thorough characterization of large‐scale Springwater textures, the definitively nonrandom spatial distribution of olivine orientations provides clues regarding the nature of the olivine's initial formation environment as well as the sequence of events subsequent to metal incorporation.  相似文献   

20.
Abstract– To constrain the effects of capture modification processes, the size distribution of nanoscale refractory Fe‐Ni‐S inclusions (“droplets”) was measured in five allocations extracted from throughout the depth of Stardust Track 35. The Fe/S ratio has been previously shown to increase significantly with penetration depth in this track, suggesting increasing capture‐related modification along the track. Astronomical image analysis tools were employed to measure the sizes of more than 8000 droplets from TEM images, and completeness simulations were used to correct the distribution for detection bias as a function of radius. The size distribution characteristics are found to be similar within independent regions of individual allocations, demonstrating uniformity within grains. The size distribution of the Fe‐Ni‐S droplets in each allocation is dominated by a mode near 11 nm, but is coarse‐skewed and leptokurtic with a mean of ~17 nm and a standard deviation of ~9 nm. The size distribution characteristics do not vary systematically with penetration depth, despite the strong trend in bulk Fe/S ratio. This suggests that the capture modification process is not primarily responsible for producing the morphology of these nanoscale droplets. The Stardust Track 35 droplet size distribution indicates slightly smaller sizes, but otherwise resembles those in carbonaceous chondrite Acfer 094, and chondritic porous interplanetary dust particles that escaped nebular annealing of sulfides. The size distribution of metal‐sulfide beads in Stardust’s quenched melted‐grain emulsions appears to be inherited from the size distribution of unmelted sulfide mineral grains in comet‐dust particles of chondritic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号