首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of historical and of post-seismic triangulation data is used to model vertical crustal movements in the vicinity of the Kapareli Fault (or the Alkynonides earthquakes North Fault), one of the two antithetic normal faults which reactivated during the 1981, Gulf of Corinth (Ms = 6.7) earthquakes. This fault is characterized by a much smaller geomorphological signature than the South (or Perachora) fault of the same seismic sequence. Analysis of geodetic data on the basis of polynomial filtering and elastic dislocation modelling, as well as analysis of structural and coastal change data permits us to conclude that the upper bound in the uncertainty level of most of the available elevation changes is 20–30 cm, usually lower than the corresponding dislocation signal. In addition, the available geodetic data have a systematic pattern and are consistent with structural data. For this reason they permit more precise constraints on the geometry and the role of the Kapareli Fault (or the Alkyonides earthquakes North Fault): its total length is estimated about 17 km, about 50% longer than its surface trace; about 30–40 cm subsidence of its hanging wall, as well as at least 15 cm maximum uplift of its footwall is also inferred. This new evidence suggests that although in the long-term the Kapareli fault may represent a rather secondary, antithetic fault to the Alkyonides earthquakes South (Perachora) fault, during the 1981 earthquakes it probably had a more important structural role.  相似文献   

2.
In this paper we expand over the whole of central Greece, the Moho map centered on the Gulf of Corinth from tomographic inversion of PmP traveltime profile data recorded by several tens of temporary stations. Our approach is based on Pn, Moho refracted waves, from a large regional earthquake recorded by both temporary stations and the permanent Hellenic network. The Moho map shows the large Moho depth under the Hellenides belt. It also highlights the shallower Moho domain towards the Aegean Sea south and east of the Corinth Gulf. The domain of shallow Moho is limited along a NE–SW prolongation ahead of the North Anatolian Fault, from the North Aegean Trough to the western tip of the Gulf of Corinth towards the Gulf of Patras. The Pn time-terms provide corrections for the permanent stations that can be used together with the 1D velocity–depth model for a first-order compensation of lateral heterogeneity and contribute to the accurate and fast location of earthquake hypocenters. As a test we relocated the 1995 Aigion earthquake in this way, using only the sparse data of the permanent stations. Hypocentral coordinates then shift close to those derived by a dedicated dense array deployed after the earthquake, implying improvement of the routine location.  相似文献   

3.
Palaeoseismological and morphotectonic analyses enable us to define a 400-m-wide actively deformed zone associated with the active Eliki normal fault, central Greece, bounded on the south by a second-order fault and on the north by a composite and prominent fault scarp. This scarp is further analysed by trenching. Based on colluvium stratigraphy, displacement of distinct horizons and deposition of sedimentary layers, three faulting events have been identified along four fault strands affecting unconsolidated sediments in the trench. The two younger events, with throws of 0.93 and 1.37 m, respectively, the third event, with a throw of 0.44 m, and the penultimate 373 BC event suggest a variable seismic history.The entire alluvial plain of the Kerynitis and Vouraikos rivers, which cross the Eliki fault, has subsided at a rate of 1.4 mm/year, resulting in the burial of the Late Hellenistic–Roman occupation horizons under 3 m of fluvial and colluvial sediments in places.Extension in the broader area is accommodated by the seismically active Eliki and Egion faults. Structural and palaeoseismological analysis of those two faults indicates that they accommodate 1.5 mm/year, or about 10% of the geodetically estimated extension of up to 13 mm/year.  相似文献   

4.
Palaeoseismological and archaeological analysis of a trench enabled us to estimate the Holocene slip rates on the East Helike Fault, flanking the south-western Gulf of Corinth. We recognized two major fault strands within the trench: the ‘north fault’ controls a succession of three colluvial wedges and the deposition of a 2.7 m thick sedimentary sequence. The ‘south fault’ controls the deposition of a 2.9-m thick brownish-red colluvium. Based on colluvial stratigraphy, radiocarbon dating of the sediments suggests that the slip rate was c. 0.3 mm yr−1 from 10 250 to c. 1400 bp , when it increased dramatically to c. 2.0 mm yr−1 after a strong earthquake event near 1400 bp . The faster slip rate evidently increased the sedimentation rate.  相似文献   

5.
The exhaustive review of a long number of historical documents, books, reports,scientific and press reports, instrumental recordings, previous catalogues andpersonal field observations, concluded with the production of a completely newtsunami catalogue for the Corinth Gulf, Central Greece, which is arranged in theformat adopted by the GITEC group for the new European Tsunami Catalogue.The catalogue is presented in three sections: the Quick-Look Table, the Quick-LookAccounts File and the References File. An Appendix explains why some particularsea disturbances were not included in the new catalogue although they were consideredas tsunami events by previous researchers. Past history clearly shows that most tsunamis in the Corinth Gulf are produced by strong (Ms 5.5) offshore and near shore earthquakes. However, seismic or aseismic sliding of coastal and submarine sediments is a significant factor in tsunamigenesis. Calculations based on the random model indicate that the probability for at least one tsunami occurrence of intensity TI 2 TI 3 and TI 4 within 50 years equals 0.851, 0.747 and 0.606, respectively. From the intensity–frequency relationship the mean return period of tsunami intensity TI 2, TI 3 and TI 4 equals to 16, 40 and 103 years. The tsunami geographicaldistribution, however, is non-random with a clear trend for the tsunamigenesis todecrease drastically from west to east within the Corinth Gulf. In fact, the probabilityfor a strong earthquake to cause a tsunami of TI 3 in the Corinth Gulf consideredas an entity is 0.35, while in the western part of the Gulf it goes up to 0.55. Therefore, the rapid and accurate determination of the earthquake focal parameters is of great importance in an algorithm of a real-time tsunami warning system in the Corinth Gulf.  相似文献   

6.
The easternmost sector of the Gulf of Corinth, the Beotia area in Central Greece, is an area with active normal faults located between the two major rift structures of Central Greece, the Gulf of Corinth and the North Gulf of Evia. These active normal faults include WNW to E–W and NE to ENE-trending faults affect the landscape and generate basin and range topography within the Beotia. We study four normal fault zones and drainage basin geometry in the easternmost sector of the Gulf of Corinth to document the impact of active tectonics on the landscape evolution. Fault and drainage geometry are investigated based on detailed field mapping and high-resolution digital elevation models. Tectonic geomorphic analysis using several parameters of active tectonics provides information concerning the relative tectonic activity and fault growth. In order to detect areas of lateral stream migration that could indicate recent tectonic activity, the Transverse Topographic Symmetry Factor and the Asymmetry Factor are used to analyse drainage basin geometry in six large drainage basins and a drainage domain covering the study area. Our results show that vertical motions and tilting associated with normal faulting influence the drainage geometry and its development. Values of stream-gradient indices (SL) are relatively high close to the fault traces of the studied fault zones suggesting high activity. Mountain-front sinuosity (Smf) mean values along the fault zones ranges from 1.08 to 1.26. Valley floor width to valley height ratios (Vf) mean values along the studied fault zones range between 0.5 and 1.6. Drainage basin shape (BS) mean values along the fault zones range from 1.08 to 3.54. All these geomorphic parameters and geomorphological data suggest that the analyzed normal faults are highly active. Lateral fault growth was likely produced by primarily eastward propagation, with the WNW to E–W trending faults being the relatively more active structures.  相似文献   

7.
A large number of studies have documented the structural and sedimentary architecture of the Corinth Gulf, especially the major E–W trending normal faults important in accommodating the main extensional strain and associated growth of the Gilbert fan deltas. However, the role of several N–S oriented structures that crop out at the surface and are detectable at depth by seismic reflection and gravity surveys are not clearly understood. Based on new geological data, collected near Xylokastro, we describe the N–S oriented tectonic activity of this area. The mapped inland faults correspond to off-shore structures identified in re-interpreted seismic lines and appear to have acted as a major transfer zone during the opening of the Corinth Gulf. Reconstruction of the paleo-topography based on sedimentary facies and the environment of clay mineral formation suggest these transfer zones played an important role in controlling both local structural relief and depositional conditions of the Gilbert fan deltas.  相似文献   

8.
9.
The Gulf of Corinth, Greece, is a 110-km-long by 30-km-wide active graben displaying strong seismicity hosted both on north and south dipping normal faults. This complex fault pattern consists of two fault populations, offshore and onshore. The offshore fault population is investigated by densely arranged seismic reflection profiles during the last 20 years, whereas the onshore fault population displays spectacular and well exposed faults, delineated by high accuracy mapping. We analyzed fault length and throw, in order to study the scaling properties of 136 well-determined offshore and onshore faults and the comparison between the two datasets. We examined the statistical properties on both fault populations, in order to describe the role of segmentation in the growth of faults and the different stages of the evolution of the fault networks.Our results on power law relationships associated with the scaling properties of the fault zones in the Gulf of Corinth, suggest that both fault populations are bi-fractal, providing the initiation of a sature state in deformation. In addition, the vertical throw of faults shows that both fault populations have similar properties but different distributions below and above 5 km, respectively. Displacement–length ratios, show that faults larger than 9 km appear to accumulate throw without any dramatic change to their length. These observations combined with other geophysical studies within the Gulf, suggest that the characteristic fault lengths of 5 km and 9 km can be correlated to the crustal mechanical structure and the seismicity of the Gulf.  相似文献   

10.
Facies, depositional model and stratigraphic architecture of Pleistocene giant Gilbert-type fan deltas are presented, based on outcrop data from the Derveni–Akrata region along the southern coast of the Gulf of Corinth, Greece. The common tripartite consisting of topset, foreset and bottomset [Gilbert, G.K., 1885. The topographic features of lake shores: Washington, D.C., United States Geol. Survey, 5th Annual Report, 69–123.] has been identified, as well as the most distal environment consisting of turbidites, and is organised in a repetitive pattern of four main systems tracts showing a clear facies and volumetric partitioning.The first systems tract (ST1) is characterised by the lack of topset beds and the development of a by-pass surface instead, thick foresets and bottomset beds, and thick well-developed turbiditic systems. This systems tract (ST1) is organised in an overall progradational pattern. The second systems tract (ST2) is characterised by a thin topset and almost no foreset equivalent. This systems tract is not always well-preserved and is organised in an overall retrograding trend with a landward shift in the position of the offlap break. The offshore is characterised by massive sandy turbidites. The third systems tract (ST3) is characterised by small-scale deltas prograding above the staked topsets of the giant Gilbert-type fan delta. Those small Gilbert-type fan deltas are generally organised in a pure progradation evolving to an aggradational–progradational pattern. In the distal setting of those small Gilbert-type fan deltas, almost no deposits are preserved on the remaining topography of the previous Gilbert-type fan delta. The fourth systems tract (ST4) is characterised by continuous vertically aggrading topsets that laterally pass into aggrading and prograding foresets. Bottomsets and distal turbiditic systems are starved. This fourth systems tract (ST4) is organised in an overall aggrading trend.These giant Gilbert-type fan deltas correspond to the Middle Group of the Corinth Rift infill and their stratigraphic development was strongly influenced by evolving rift structure. They record the migration of the depocenter from the rift shoulder to the rift axis in four main sequences from ca. 1.5 to 0.7 Ma, related to the migration of fault activity. It is worth noting that the maximum paleobathymetry was recorded during the final stage of the progradation of the Middle Group, suggesting that the rift climax was diachronous at the scale of the entire basin. The rapid (< 1 Ma) structural and sedimentological evolution, the migration of fault activity as well as the youth of the Corinth Rift, are probably exceptional factors allowing the characterisation of such diachronism.  相似文献   

11.
Foreshock activity preceding strong (Ms ≥ 5) main shocks in the Corinthos Gulf, Central Greece, is examined from primarily a data set of 1970–1998 and supplementary from data sets of 1785–1910 and 1911–1969. It has been found that foreshock activity appears at time T ≤ 4 months before the main shock. In general there is no apparent tendency of foreshock epicenters to move towards the main shock epicenter. The last 10 days of the foreshock period is the most important phase since the probability for the main shock occurrence at any time within that time window is very high exceeding 0.83. The duration of the foreshock period as well as the largest foreshock magnitude are both independent of the main shock magnitude. Obtained results are important for inclusion in probabilistic earthquake predictions in the Corinthos Gulf.  相似文献   

12.
The eustatic sea-level rise due to global warming is predicted to reach approximately 18?C59 cm by the year 2100, which necessitates the identification and protection of sensitive sections of coastline. In this study, the classification of the southern coast of the Gulf of Corinth according to the sensitivity to the anticipated future sealevel rise is attempted by applying the Coastal Sensitivity Index (CSI), with variable ranges specifically modified for the coastal environment of Greece, utilizing GIS technology. The studied coastline has a length of 148 km and is oriented along the WNW-ESE direction. CSI calculation involves the relation of the following physical variables, associated with the sensitivity to long-term sea-level rise, in a quantifiable manner: geomorphology, coastal slope, relative sea-level rise rate, shoreline erosion or accretion rate, mean tidal range and mean wave height. For each variable, a relative risk value is assigned according to the potential magnitude of its contribution to physical changes on the coast as the sea-level rises. Every section of the coastline is assigned a risk ranking based on each variable, and the CSI is calculated as the square root of the product of the ranked variables divided by the total number of variables. Subsequently, a CSI map is produced for the studied coastline. This map showed that an extensive length of the coast (57.0 km, corresponding to 38.7% of the entire coastline) is characterized as highly and very highly sensitive primarily due to the low topography, the presence of erosionsusceptible geological formations and landforms and fast relative sea-level rise rates. Areas of high and very high CSI values host socio-economically important land uses and activities.  相似文献   

13.
The Gulf of Corinth in central Greece is an active normal fault zone with particularly clear evidence of isostatic footwall uplift, constrained by Quaternary marine terraces, and hanging-wall subsidence and sedimentation. It is bounded to the south by a Pliocene to Early Pleistocene sedimentary basin, which is now eroding into the Gulf. Previous work has suggested that the relief across this region has increased dramatically since the Early Pleistocene, due to the isostatic response to increased rates of footwall erosion and hanging-wall sedimentation. It is indeed assumed here that incision accompanying the draw-down of global sea-level at 0.9 Ma, during the first major Pleistocene glaciation, initiated the erosion of the basin south of the Gulf of Corinth and so abruptly increased the sedimentation rate in the Gulf. The resulting transient thermal and isostatic response to these changes is modelled, with the subsiding depocentre and eroding sediment source coupled by flow in the lower continental crust. The subsequent enhancement of relief, involving an increase in bathymetry from near zero to 900 m and 500 m of uplift of the eroding land surface in the sediment source, is shown to be a direct consequence of this change. The model is sensitive to the effective viscosity of the lower crust, and can thus resolve this parameter by matching observations. A value of 6×1019 Pa s is indicated, suggesting a viscosity at the Moho no greater than 1018 Pa s. Similar transient topographic effects caused by increased rates of sedimentation and erosion are likely to be widespread within the geological record, suggesting that this coupling process involving flow in the weak lower crust may be of major geological and geomorphological importance.  相似文献   

14.
The destructive earthquake (Ms = 6.1 R) that hit the town of Egio and the surrounding area of the Northern Peloponnessos (Greece) generated extensive liquefaction, ground fissuring and coastline changes.
Historical data indicate that the same region has experienced episodic earthquake damage, with some seismogenic phenomena having reoccurred at the same locations. In conclusion, it is confirmed that this is a high seismic risk region, where proper building design and planning can reduce the potential danger if the geodynamic setting is properly taken into account.  相似文献   

15.
In the present paper we analyze the effect of local geology on ground motion by means of numerical calculations (numerical models) using total (TS) and effective stress (ES) methods. These numerical calculations have been applied to the site of Itea, Corinth Gulf, which was chosen based on liquefaction susceptibility criteria and field inspection. Data from seismic refraction experiments and cone penetration test N-values as well as selected records of ground motion in nearby areas were used to construct the input file for the numerical model. By means of␣dynamic analysis such characteristics of ground motion as acceleration time histories, response spectra, and amplification function were evaluated. A one-dimensional soil amplification effect was clearly shown. Liquefaction probability at the Itea site was predicted based on the safety factor and the calculation of the induced settlement at the test site. Results of the TS and ES modeling lead us to conclude: (1) the presence of soft soil at Itea caused significant amplification (almost 2.5-fold higher magnitude) of the underlying bedrock motion and, therefore, can contribute to damage; (2) the area of Itea is highly susceptible to liquefaction due to presence of silty sand deposits at depths between 2.48 m (the position of the water table) and 12 m that demonstrate the rapid growth of the excess pore water pressure (EPWP) ratio with an increase in peak ground acceleration values.  相似文献   

16.
The northern coast of the Peloponnesus (Greece) is characterized by high seismic activity related to the Gulf of Corinth opening with an extension rate of 16 mm y− 1. Studies presented in this paper focus on the characterization of links between tectonic and slope deformations on the Panagopoula slope, located on the southern coast. The approach is centred on qualitative and quantitative data acquisition based on geological and geomorphological investigations, geophysical imagery by electrical resistivity tomography and slope displacement monitoring.Firstly, we highlight two different types of slope deformation on Panagopoula: a superficial landslide affecting weathered limestone, and a large-scale deformation without global failure expressed in the field. Tectonic features play a major role in these two dynamic processes, taking into account the strong geometrical link between the inherited fractures and gravitational scarps mapped in the field.Secondly, the displacements survey network, distributed on both sides of a significant fault crossing the slope, allows the quantification of slope displacements underlying two components: (i) a gravitational sliding (N010) along the slope, and (ii) a supposed tectonic component (N240).  相似文献   

17.
Focal mechanism and surface slip data are used to investigate whether kinematics are similar at depth and at the surface along an active normal fault in the Gulf of Corinth, Greece. We present a new database of slip data from the lateral termination of the South Alkyonides fault segment (SAFS) and the en échelon stepover between it and an adjacent fault, and use published data on surface slip and focal mechanism data pertaining to slip at depth during the 1981 Alkyonides earthquake sequence. The focal mechanisms exhibit similar fault plane orientations and kinematics to those measured at the surface. Within the stepover, both data sets show that contemporaneous c. N–S and c. E–W extension is being accommodated by c. E–W- and c. N–S-oriented normal faults, and the overall deformation is distributed oblate vertical flattening. The deviation of the surface slip direction from 350° increases with distance from the centre of the SAFS. The deviation of the focal mechanism T-axes from 350° fit well with the surface data, implying that the coseismic slip on the SAFS at depths of 7–10 km exhibits a similar kinematic pattern as that observed at the surface. Our results imply that it is critical to know the along-strike position of data on a fault if either focal mechanisms or surface slip are to be used to infer regional strain and stress trajectories.  相似文献   

18.
An integrated study of the stratigraphy, structure, sedimentology, and geomorphology of the Akrata–Derveni region (southern coast of the Gulf of Corinth, Greece) forms the basis for a tectono-stratigraphic model for the evolution of the Plio-Pleistocene central Corinth Rift.

The syn-rift sediments exposed on the uplifted southern coast of the Gulf of Corinth comprise three stratigraphic groups. Maximum total thickness of the syn-rift sediments can reach 2800 m in the middle of the studied area. The Lower Group is made of fluvio-lacustrine deposits. The Middle Group corresponds to thick alluvial fan conglomerates and their equivalent Gilbert-type fan deltas that built toward the north. The Upper Group is composed of uplifted terrace deposits, slope breccias and small Gilbert-type deltas. These groups have been subdivided into informal formations and depositional systems. Restoration of the stratigraphic architecture along a N–S transect provides a linked structural and depositional model for this part of the rift. Reconstruction of the latest phases of uplift is based on a study of geomorphological features.

Evolutionary phases include, (1) an overall increase in accommodation space during deposition of the Lower and Middle Groups followed by (2) a drastic decrease in accommodation space during deposition of the Upper Group. Sedimentary signals indicate that most of the major normal faults were active during deposition of the Lower Group. The depocentre was located in the middle part of the study area and paleocurrents were predominantly toward the ENE. The main depositional system shifted south at the onset of deposition of the Middle Group, recording a widening and deepening of the rift. This major event also corresponds to a change in paleocurrent direction to a clear northward polarity. The southernmost border fault, the Killini Fault, was sealed during deposition of the Middle Group. A northward migration of fault activity was associated with northward progradation of giant Gilbert-type fan deltas that record water depths up to 500 m. Finally, the fan delta system was abandoned as progressive tilting to the south and uplift of the margin induced a reversal of the drainage system with the development of an endorheic depression. Sediment supply to the basin thus decreased and a forced regression took place during deposition of the Upper Group recording a northward shift of more than 5 km and a 600 m relative sea-level drop. As no major eustatic sea-level falls of such amplitude are documented during the Pleistocene, the uplift is linked to regional tectonics. Uplift and fault reactivation gave the present day configuration of the southern coast of the Gulf.  相似文献   


19.
Reliable dating is an essential element of palaeoseismological studies, yet whilst a suite of geochronological methods can now provide late Quaternary age control it remains very difficult to date modern events (i.e., those occurring within the last 150 years). This is significant because the starting point for many palaeoseismological investigations is a modern surface-rupturing event, whose geological effects need to be disentangled in trench stratigraphies from palaeoseismic ruptures. Two dating methods which, in combination, can provide robust dating control in recently deposited sediments are the 210Pb and 137Cs dating methods. Here, we test the applicability of using 210Pb and 137Cs to date colluvial sediments exposed in three trenches excavated across an earthquake fault—the Eliki fault, Gulf of Corinth, Greece—which ruptured in an earthquake in 1861. The 210Pb and 137Cs profiles observed in these colluvial sequences are relatively erratic due to the mixed nature of the sediments, i.e., their deposition in an environment where the supply of slope sediments is driven by seasonal rainfall, causing non-uniform sediment accretion and sediment reworking. In one trench, however, 210Pb dating, corroborated by 137Cs dating, indicates that a proposed post-1861 surface colluvial unit has been deposited over the period 1950 AD–present (at a rate of ca. 9 mm/year), and overlies a significantly older unit (>120 years old). The dating control provided here by 210Pb and 137Cs dating corroborates the published interpretation of the trench stratigraphy, and refines the 14C-based estimated dates for the upper unit. At two other trenches 210Pb and 137Cs dating only provided minimum ages (based on the presence or absence of 210Pbexcess and 137Cs). Such approximate ages, however, may still useful in corroborating interpretations made using the trench stratigraphy, or, at sites which have long earthquake recurrence intervals, determining which earthquake event was responsible for a particular bed offset.  相似文献   

20.
The cyanobacterium Rivularia haematites has calcified to form unusually large (up to 10 m high) bioherms in the Pleistocene Gulf of Corinth. Today R. haematites calcifies only in freshwater environments but these Gulf of Corinth bioherms have a brackish affinity, limited areal extent, and occur within marine deposits. Field relations and preliminary U-series dating suggest a marine isotope stage (MIS) 5e age for the bioherms. This age is compatible with published MIS 5e ages for corals in the marine sediments above the bioherms and is consistent with their current elevation based on average uplift rates. Bioherm growth during MIS 5e constrains their formation during a time of near sea-level highstand when the Gulf of Corinth was marine. Growth cavities in the bioherms are encrusted by brackish tolerant coralline algae. Field mapping of the MIS 5e highstand palaeoshoreline shows the bioherms grew in water <16 m deep. Mg contents of the bioherm calcites, and associated coralline algal skeletons, are both much lower than expected for marine MIS 5e carbonates. They are best explained if the calcites precipitated from brackish fluids with Mg/Ca ratios below 2, implying at least 60% input of freshwater with low Mg/Ca ratio. Sr isotopes confirm a strong input of groundwater that had partially equilibrated with Mesozoic limestones. The limited areal extent of the bioherms and their close association with karstified fault scarps suggest that they formed in shallow sea water where freshwater submarine springs delivered CaCO3 saturated water that promoted rapid calcification of cyanobacteria. Rapid calcification and strong degassing of CO2 from the spring water resulted in disequilibrium stable isotope compositions for the calcites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号