首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Crouch  A.D.  Cally  P.S. 《Solar physics》2003,214(2):201-226
Sunspots absorb incident p modes. The responsible mechanism is uncertain. One possibility is mode conversion to slow magnetoacoustic–gravity waves. In vertical field mode conversion can adequately explain the observed f-mode absorption, but is too inefficient to explain the absorption of p modes. In this investigation we calculate the efficiency of fast-to-slow magnetoacoustic–gravity wave conversion in non-vertical field. We assume two-dimensional propagation where the Alfvén waves decouple. It is found that resultant p-mode absorption is significantly enhanced for moderate inclinations at higher frequencies, whereas for p modes at lower frequencies, and the f mode in general, there is no useful enhancement. However, the enhancement is insufficient to explain the observed p-mode absorption by sunspots. Paper II considers the efficiency of mode conversion in non-vertical field with three-dimensional propagation, where fast and slow magnetoacoustic–gravity waves and Alfvén waves are coupled.  相似文献   

2.
We analyse the linear transformation of Alfvén p-modes into quasisurface waves and the resonant absorption of Alfvén p-waves in a slowly varying medium with a density gradient, parallel to the ambient homogeneous magnetic field. It is pointed out, that the energy transfer from Alfvén p-waves to quasisurface waves appear to take place in sunspots. The results obtained also suggest that Alfvén p-waves generated by overstability in sunspots may be absorbed in deep layers under sunspots. Moreover, it is very likely that part of the downward wave flux is reflected and hence it is possibble that essentially the energy from sunspots is transported outward by magnetogravitational waves, to which Alfvén p-waves are transformed.  相似文献   

3.
The linearized theory for the parallel propagation of magnetoacoustic-gravity surface waves is developed for an interface of a horizontal magnetic field above a field-free medium. The media either side of the interface are taken to be isothermal. The dispersion relation is obtained for the case of a constant Alfvén speed. In the absence of gravity the interface may support one or two surface modes, determined by the relative temperatures and magnetism of the two media. The effect of gravity on the modes is examined and dispersion diagrams and eigenfunctions are given. In the usual - k x diagnostic diagram, the domain of evanescence is shown to be divided into two distinct regions determining whether a given mode will have a decaying or growing vertical velocity component. In the absence of a magnetic field the transcendental dispersion relation may be rewritten as a polynomial. This polynomial possesses two acceptable solutions only one of which may exist in any given circumstances (depending on the ratio of the densities). If the gas density within the field exceeds that in the field-free medium, then the f-mode may propagate. The f-mode exists in a restricted band of horizontal wavenumber and only when the field-free medium is warmer than the magnetic atmosphere. An analytical form for the wave speed of the f-mode is obtained for small values of the Alfvén speed. It is shown that the f-mode is related to the fast magnetoacoustic surface wave, merging into that mode at short wavelengths.  相似文献   

4.
Cally  P.S. 《Solar physics》2000,192(1-2):395-401
Sunspots absorb and scatter incident p modes. The dominant mechanism is still uncertain. One possibility, mode conversion to slow magneto-acoustic waves, has been shown to yield results in agreement with observations for the f mode only. Absorption of p modes in simple vertical magnetic field models is too weak by an order of magnitude or more. Here we report on numerical calculations of p modes encountering a simple sunspot model with field which spreads with height. It is found that p-mode absorption is greatly enhanced by field spread, to a level consistent with observations, and it appears that it occurs preferentially in the outer regions of the spot, in line with recent results from acoustic holography.  相似文献   

5.
在柱坐标下将黑子周围的环形区域(黑子除外)内的振荡分解为朝向黑子传播的(入射的)波和离开黑子传播的(出射的)波。对无黑子的环形区域内的振荡也进行了同样的分解。将黑子周围的入射波看成是被黑子磁流管磁化了的介质(介质内的磁场基本是水平的)中的波。而无黑子区的入射波看成是非磁化介质中的波。比较这两种波在固定波数下功率随频率的分布发现,在磁化介质中不同径向除n的声波(p模)频率系统降低,同时功率也降低,降低的功率最高达非磁化介质中波的功率的30%。而比较在固定频率下功率随波数的分布发现,磁场中f模及n=1,2,3的p模的脊向高波数方向位移,功率的降低受频率调制,即声波在某些有限的频带中被吸收。这些观测表明,在磁场中p模与磁声重力波(MAG)产生了模式混合或耦合。模式混合的存在支持了模式转换作为p模式被黑子吸收的机制的解释。此外,本文还分析了转换的MAG波进入黑子磁流管(其中的磁场基本上是垂直的)后进一步被吸收,吸收的功率最高达MAG波的20%。在磁流管内没有进一步观测到模式的转换  相似文献   

6.
Barnes  G.  Cally  P.S. 《Solar physics》2000,193(1-2):373-382
Sunspots are strong absorbers of f and p modes. A possible absorption mechanism is direct conversion to slow magnetoacoustic waves. Calculations based on vertical magnetic field models show that this works well for f modes, but is inadequate for p modes. Using a very simple shallow spot model, in which the effects of the magnetic field are accounted for solely by a surface condition, we investigate the possibility that p modes first scatter into f modes inside the spot, which are then more susceptible to conversion to slow modes. We find that the coupling between an incident p mode and the internal f mode is unlikely to be strong enough to account for the observed absorption, but that the incident modes do couple strongly to the acoustic jacket in some cases, leading to a region immediately around the sunspot where a significant fraction of the surface velocity is due to the jacket modes.  相似文献   

7.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

8.
The solar corona, modeled by a low-, resistive plasma slab, sustains MHD wave propagations due to footpoint motions in the photosphere. Simple test cases are undertaken to verify the code. Uniform, smooth and steep density, magnetic profile and driver are considered. The numerical simulations presented here focus on the evolution and properties of the Alfvén, fast and slow waves in coronal loops. The plasma responds to the footpoint motion by kink or sausage waves depending on the amount of shear in the magnetic field. The larger twist in the magnetic field of the loop introduces more fast-wave trapping and destroys initially developed sausage-like wave modes. The transition from sausage to kink waves does not depend much on the steep or smooth profile. The slow waves develop more complex fine structures, thus accounting for several local extrema in the perturbed velocity profiles in the loop. Appearance of the remnants of the ideal singularities characteristic of ideal plasma is the prominent feature of this study. The Alfvén wave which produces remnants of the ideal x –1 singularity, reminiscent of Alfvén resonance at the loop edges, becomes less pronounced for larger twist. Larger shear in the magnetic field makes the development of pseudo-singularity less prominent in case of a steep profile than that in case of a smooth profile. The twist also causes heating at the edges, associated with the resonance and the phase mixing of the Alfvén and slow waves, to slowly shift to layers inside the slab corresponding to peaks in the magnetic field strength. In addition, increasing the twist leads to a higher heating rate of the loop. Remnants of the ideal log ¦x¦ singularity are observed for fast waves for larger twist. For slow waves they are absent when the plasma experiences large twist in a short time. The steep profiles do not favour the creation of pseudo-singularities as easily as in the smooth case.  相似文献   

9.
C. S. Rosenthal 《Solar physics》1990,130(1-2):313-335
It has been hypothesized that the observation of substantial absorption of acoustic power in the vicinity of sunspots may be explained by the transformation of acoustic oscillations into highly damped shear Alfvén waves in thin resonant layers. Analytical estimates of the efficiency of this process (Hollweg, 1988) are compared with direct one-dimensional numerical simulations of absorption by a magnetic barrier in a viscous medium. After slight modification, the estimate is found to give a good approximation to the numerical absorption rate.Further calculations are performed for scattering from a magnetic field of fibril structure. Such models are better able to explain the spatial structure of the absorbing region implied by the observations. It is found that the existence of a multiplicity of surfaces at which resonant absorption occurs can considerably increase the total energy absorption coefficient. Resonant effects involving the multiple reflection of acoustic waves within such structures can also lead to enhanced absorption. Fibril models, therefore, produce significantly increased absorption over a wide range of plausible parameter values, and are a more plausible explanation for the observed p-mode scattered power deficit than resonant absorption in a monolithic structure.  相似文献   

10.
Rekha Jain  B. Roberts 《Solar physics》1991,133(2):263-280
The occurrence of magnetoacoustic surface waves at a single magnetic interface one side of which is field-free is explored for the case of non-parallel propagation. Phase-speeds and penetration depths of the waves are investigated for various Alfvén speeds, sound speeds and angles of propagation to the applied field. Both slow and fast magnetoacoustic surface waves can exist depending on the values of sound speeds and propagation angle. The fast waves penetrate more than the slow waves.The parallel propagation of fast and slow magnetoacoustic surface waves on a magnetic-magnetic interface is investigated. The slow surface wave is unable to propagate below a critical sound speed. In a low -plasma, only the fast mode exists (0 0).  相似文献   

11.
We have modeled the solar coronal active loop heating by discrete Alfvén waves. Discrete Alfvén waves (DAW) are a new class of Alfvén waves which can be described by the two-fluid model with finite ion-cyclotron frequency, or the MHD model with plasma current along the magnetic field line as shown by Appert, Vaclavik, and Villar (1984). We have modeled the coronal loop as a semi-toroidal plasma with the major toroidal radius much larger than the plasma radius. We have shown that the absorption of discrete Alfvén waves by the plasma through viscosity can account for at least 30% of the coronal heating rate density of 10–4 J m–3 s–1.  相似文献   

12.
E. N. Parker 《Solar physics》1974,37(1):127-144
The properties of Alfvén waves in a vertical column of field are pointed out as a guide in treating the complicated problem of overstability. There are internal Alfvén waves of arbitrary form propagating along the magnetic field, without disturbing the fluid outside the column. There are also surface waves which involve the fluid both inside and outside the column of field. The surface waves propagate at a speed less than the Alfvén speed.Convective forces couple the internal and external fluid motions. If the forces are not too strong, the identity of the modes, as internal waves or surface waves, is maintained. The surface waves are unstable and, we suggest, may contribute to some of the activity of a sunspot. We suggest that the internal Alfvén wave modes are of more central interest for producing the basic sunspot phenomena. They represent the degenerate case, and their form is worked out in some detail. The overstable Alfvén wave modes peak sharply near the outer edge of the field, and do not strongly disturb the fluid outside. We suggest that this effect contributes to the sharp edge of the sunspot umbra.Recent observations by Giovanelli show intense wave activity originating inside the edge of the umbra. We tentatively identify the activity with the peak in the overstable modes within the umbra.This work was supported in part by the National Aeronautics and Space Administration under Grant NGL 14-001-001.  相似文献   

13.
We study a model of extended radio sources (ERS), in particular, extragalactic jets and radio lobes, which are inhomogeneous and where noncompressive Alfvén and surface Alfvén waves (and not shocks and magnetosonic waves) are primarily excited. We assume that a negligible thermal population exists (i.e., the ion density at the low-energy cut-off of the power law distribution is greater than the ion density of the thermal population, if present). Due to internal instabilities and/or the interaction of the ERS with the ambient medium, surface Alfvén waves (SAW) are created. We show that even very small amplitude SAW are mode converted to kinetic Alfvén waves (KAW) which produce large moving accelerating potentials , parallel to the magnetic field. Neglecting nonlinear perturbations, and for typical physical parameters of ERS, we obtaine1 MeV. Wesuggest that these potentials are important in acceleration (e.g., injection energy) and reacceleration of electrons in ERS. We show that energy losses by synchrotron radiation can be compensated by reacceleration by KAW. The relation between KAW acceleration, and previously studied cyclotron-resonance acceleration by Alfvén waves, is discussed.  相似文献   

14.
Erdélyi  Róbert 《Solar physics》1998,180(1-2):213-229
The effect of equilibrium flow on linear Alfvén resonances in coronal loops is studied in the compressible viscous MHD model. By means of a finite element code, the full set of linearised driven MHD equations are solved for a one-dimensional equilibrium model in which the equilibrium quantities depend only on the radial coordinate. Computations of resonant absorption of Alfvén waves for two classes of coronal loop models show that the efficiency of the process of resonant absorption strongly depends on both the equilibrium parameters and the characteristics of the resonant wave. We find that a steady equilibrium shear flow can also significantly influence the resonant absorption of Alfvén waves in coronal magnetic flux tubes. The presence of an equilibrium flow may therefore be important for resonant Alfvén waves and coronal heating. A parametric analysis also shows that the resonant absorption can be strongly enhanced by the equilibrium flow, even up to total dissipation of the incoming wave.  相似文献   

15.
Y. Chen  Y.Q. Hu 《Solar physics》2001,199(2):371-384
This paper presents a two-dimensional, Alfvén-wave-driven solar wind model, in which the wave energy is assumed to cascade from the low-frequency Alfvén waves to high-frequency ion cyclotron waves and to be transferred to the solar wind protons by cyclotron resonance at the Kolmogorov rate. A typical structure in the meridional plane consisting of a coronal streamer near the Sun, a fast wind in high latitudes, and a slow wind across the heliospheric current sheet, is found. The fast wind obtained in the polar region is essentially similar to that derived by previous one-dimensional flow-tube models, and its density profile in the vicinity of the Sun roughly matches relevant observations. The proton conditions at 1 AU are also consistent with observations for both the fast and slow winds. The Alfvén waves appear in the fast- and slow-wind regions simultaneously and have comparable amplitudes, which agrees with Helios observations. The acceleration and heating of the solar wind by the Alfvén waves are found to occur mainly in the near-Sun region. It is demonstrated in terms of one-dimensional calculations that the distinct properties of the fast and slow winds are mainly attributed to different geometries of the flow tubes associated with the two sorts of winds. In addition, the 2-D and 1-D simulations give essentially the same results for both the fast and the slow winds.  相似文献   

16.
We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈5.3 mHz, around four active regions, through spatial maps of their power estimated using data from the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The wavelength channels 1600 Å and 1700 Å from AIA are now known to capture clear oscillation signals due to helioseismic p-modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so-called “acoustic halos” seen around active regions, as a function of wave frequencies, inclination, and strength of magnetic field (derived from the vector-field observations by HMI), and observation height. We infer possible signatures of (magneto)acoustic wave refraction from the observation-height-dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p-mode absorption and mode conversions by the magnetic field.  相似文献   

17.
Whitelam  S.  Ashbourn  J.M.A.  Bingham  R.  Shukla  P.K.  Spicer  D.S. 《Solar physics》2002,211(1-2):199-219
We present an analysis of observations and theory of selected transition-region phenomena, concentrating on small scale jet-like structures known as spicules and macrospicules. We examine a number of mechanisms that may be responsible for their formation and conclude that Alfvén waves could provide the necessary acceleration through the ponderomotive force and dissipation for heating forming a beam or jet like structure. In applying the Alfvén wave model we make no fundamental distinction between spicules and macrospicules. In this respect we consider them to be manifestations of the same phenomenon on different scales. We predict that the most effective Alfvén waves have frequencies around 1 Hz and amplitudes of 1 V m–1. The resulting plasma jet sets up plasma conditions suitable for creating rotating structures which are also observed.  相似文献   

18.
The structure of the slow mode coupled with Alfvén mode in the axially symmetric magnetosphere is studied in the paper. Due to the coupling, the slow magnetosonic wave gets dispersion across magnetic shells and becomes not strictly guided. The slow mode is found to be captured between the resonant and cutoff surfaces, where the wave vector radial component goes to infinity and to zero, accordingly. The resonant surface is farther from the Earth than the cutoff surface. The slow mode resonance frequency is much lower than the Alfvén resonance frequency due to small value of the sound velocity near the equator. The maximum of the slow mode amplitude expressed in terms of the parallel magnetic field is concentrated near the equator, but expressed in hydromagnetic terms is concentrated near the ionospheres.  相似文献   

19.
Discrete Alfvén waves in coronal loops and prominences are investigated in non-ideal magnetohydrodynamics. The non-ideal effects included are anisotropic, thermal conduction, and optically thin radiation. The classic ideal Alfvén continuum is not altered by these non-ideal effects, but the discrete Alfvén modes, which exist under certain conditions above or below the Alfvén continuum in ideal MHD, are shown to be influenced by non-adiabatic effects.The existence of discrete, non-adiabatic Alfvén waves, and their damping and overstability are examined for 1D cylindrical equilibrium states with twisted magnetic fields. First, analytic results are obtained for modes of high radial order by means of a WKB-analysis. The subspectrum of discrete Alfvén modes is computed with a numerical code, with particular emphasis on the modes of low radial order. The results show that discrete Alfvén waves are of potential importance for solar applications and also that the information obtained with the WKB-analysis is of limited use in this context.Research Assistant of the Belgian National for Scientific Research.  相似文献   

20.
C. Uberoi 《Solar physics》1982,78(2):351-354
The Alfvén surface waves can arise due to the discontinuity in the Alfvén speed across the interface along which these waves propagate. This note studies the relationship between v A1 and v A2 which is required for the existence of Alfvén surface waves in low- plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号