首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We demonstrate how multiples, generated at the interfaces of plane parallel beds, modify the propagation characteristics of an originally coherent seismic wave. For waves propagating at an angle to the bedding plane we find that theSV andP-waves couple so that neither is a pure mode. TheSH-wave, while modified in its propagation characteristics by multiples, remains a pure mode. The coupling ofSV-multiples into the quasi-P-mode appears weaker than the coupling ofP-wave multiples into the quasi-SV mode; at least this is so for the two simple cases of (a) density fluctuations only and (b) correlatedV p andV s fluctuations which conserve Poisson's ratio.We also find that the coupling is sensitive to both the angle of propagation and frequency. In addition there is a cut-off angle forP-wave multiples influencing the quasi-SV mode. Propagation angles larger than the cut-off permit theP-multiples to modify the phase of the quasi-SV mode, but not its effective attenuation. No such cut-off effect is found for SV-multiples influencing the quasi-P mode, whose angle-dependent and frequency-dependent phase distortion and effective attenuation are influenced both byP-wave multiples andSV-multiples.In view of the mathematical complexity of the expressions describing the phase, and effective attenuation of modes when allowance is made forP-andS-wave multiples, we strongly advocate numerical coding of the major mathematical formulae. By so doing a systematic study can be undertaken of the frequency and offset dependence of seismic waves as a function of seismic source input and power spectral behavior of the fluctuations in density and elastic constants of beds. It is our opinion that the full mathematical expressions are too involved to permit an analytic, systematic investigation to be given of the phase and attenuation of seismic waves with any degree of sophistication or generality.  相似文献   

2.
Lei Li 《Acta Geophysica》2008,56(2):518-528
In the paper by Chattopadhyay and Rajneesh (2006, “Reflection and refraction of waves at the interface of an isotropic medium over a highly anisotropic medium’, Acta Geophysica, vol. 54, no. 3, pp. 239–249), the authors proposed a process to calculate R/T (reflection and transmission) coefficients at the interface between isotropic and triclinic half-spaces, with incident qP waves in triclinic media. Unfortunately, besides several misprints, the authors made a fatal assumption that there is no transmitted SH wave generated in isotropic media, which led the successive analytical derivations and numerical calculations thoroughly wrong. In this paper, the errors are analyzed at length and corrections are given. Then an alternative approach to solve the problem is proposed and numerical results are shown and discussed.  相似文献   

3.
In this paper the smooth perturbation technique is employed to investigate the problem of reflection of waves incident on the plane boundary of a semi-infinite elastic medium with randomly varying inhomogeneities. Amplitude ratios have been obtained for various types of incident and reflected waves. It has been shown that an incidentSH orSV type of wave gives rise to reflectedSH, P andSV waves, the main components beingSH andP, SV in the respective cases. The reflected amplitudes have been calculated depending upon the randomness of the medium to the square of the small quantity , where measures the deviation of the medium from homogeneity. An incidentP-type wave produces mainly aP component and also a weakSH component to the order of 2. The reflected amplitudes obtainable for elastic media are also altered by terms of the same order. The direction of the reflected wave is influenced by randomness in some cases.  相似文献   

4.
Scattering of plane harmonic waves by a three‐dimensional basin of arbitrary shape embedded within elastic half‐space is investigated by using an indirect boundary integral equation approach. The materials of the basin and the half‐space are assumed to be the most general anisotropic, homogeneous, linearly elastic solids without any material symmetry (i.e. triclinic). The unknown scattered waves are expressed in terms of three‐dimensional triclinic time harmonic full‐space Green's functions. The results have been tested by comparing the surface response of semi spherical isotropic and transversely isotropic basins for which the numerical solutions are available. Surface displacements are presented for a semicircular basin subjected to a vertical incident plane harmonic pseudo‐P‐, SV‐, or SH‐wave. These results are compared with the motion obtained for the corresponding equivalent isotropic models. The results show that presence of the basin may cause significant amplification of ground motion when compared to the free‐field displacements. The peak amplitude of the predominant component of surface motion is smaller for the anisotropic basin than for the corresponding isotropic one. Anisotropic response may be asymmetric even for symmetric geometry and incidence. Anisotropic surface displacement generally includes all three components of motion which may not be the case for the isotropic results. Furthermore, anisotropic response strongly depends upon the nature of the incident wave, degree of material anisotropy and the azimuthal orientation of the observation station. These results clearly demonstrate the importance of anisotropy in amplification of surface ground motion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A general solution is deduced of the differential equations describing the propagation of elastic waves in a dissipative liquid-filled viscoelastic porous solid. The velocities of three existing waves have been expressed in convenient form using the moduli of the solid phase and by introducing the frequency-dependent equivalent mass densities. The solution is then used to examine some of the phenomena which arise when each of the three-body waves, in turn, are incident on a traction-free plane boundary. Analytic expressions for the reflection coefficients are obtained. Numerical calculations have been made, for a particular model, in case of incidentP I wave. Effect of viscoelasticity and viscosity on the reflection coefficients has also been exhibited.  相似文献   

6.
Summary The effects of a uniform external magnetic field on the propagation of waves in a homogeneous, infinitely conducting flat plate with free boundaries have been studied. It has been found that in general all the three types of waves —P, SV andSH waves—are coupled and the influence may be more pronounced in coupling the symmetric and antisymmetric types of motions in every mode.When the magnetic field is parallel to the plane faces and transverse to the direction of wave propagation, the shear wave polarized parallel to the field is purely elastic whereas the coupledP andS V waves are magnetoelastic and exhibit dispersion strikingly similar to the non-magnetic case, provided the electro-magnetic radiation into the surrounding free space is neglected.The results reported in an earlier communication [1]2) are also confirmed.  相似文献   

7.
The reflection/transmission laws (R/T laws) of plane waves at a plane interface between two homogeneous anisotropic viscoelastic (dissipative) halfspaces are discussed. Algorithms for determining the slowness vectors of reflected/transmitted plane waves from the known slowness vector of the incident wave are proposed. In viscoelastic media, the slowness vectors of plane waves are complex-valued, p = P + iA, where P is the propagation vector, and A the attenuation vector. The proposed algorithms may be applied to bulk plane waves (A = 0), homogeneous plane waves (A0, P and A parallel), and inhomogeneous plane waves (A0, P and A non-parallel). The manner, in which the slowness vector is specified, plays an important role in the algorithms. For unrestricted anisotropy and viscoelasticity, the algorithms require an algebraic equation of the sixth degree to be solved in each halfspace. The degree of the algebraic equation decreases to four or two for simpler cases (isotropic media, plane waves in symmetry planes of anisotropic media). The physical consequences of the proposed algorithms are discussed in detail. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

8.
Propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane, is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a half-space of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium J as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence. Thus no set of SH seismic experiments performed in the isotropic medium in the symmetry plane of the underlying half-space can reveal anything about the monoclinic anisotropy of that underlying half-space. Moreover, even when the underlying monoclinic half-space is stratified, there exists a stratified isotropic half-space that gives the identical reflection coefficient as the stratified monoclinic half-space for all angles of incidence and all frequencies.  相似文献   

9.
This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell’s law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.  相似文献   

10.
Wave propagation in a finely layered medium is a very important topic in seismic modelling and inversion. Here we analyse non‐vertical wave propagation in a periodically layered transversely isotropic (VTI) medium and show that the evanescent (attenuation) zones in the frequency‐horizontal slowness domain result in caustics in the group velocity domain. These caustics, which may appear for both the quasi‐compressional (qP) and quasi‐shear (qSV) wave surfaces are frequency dependent but display weak dependence at low frequencies. The caustics computed for a specific frequency differ from those observed at the low‐ and high‐frequency limits. We illustrate these caustics with a few numerical examples and snapshots computed for both qP‐ and qSV‐wave types.  相似文献   

11.
It is known that the reflection and transmission coefficients used in the zeroth order approximation of asymptotic ray theory (ART) are identical to those obtained for the plane wave impinging on a plane interface separating two perfectly elastic half-spaces. We have used ART to compute reflection and transmission coefficients for two viscoelastic media separated by a plane interface. Our method is different from the plane-wave approach because the ART approach requires only a local application of the boundary conditions both for the eikonal and the ray amplitudes. Several types of viscoelastic media were studied. For a given model, the elastic case was emulated by setting all the quality factors Q equal to each other. Several anelastic cases were computed by keeping the same velocities and densities while changing the Qs. The quality factor is a relatively difficult parameter to measure exactly. Hence elastic coefficients are used in most synthetic seismogram computations, and the quality factors are chosen from experimental measurements or simply estimated. From these computations, amplitude and phase differences between elastic coefficients and coefficients for dissipative media are observed in some cases. These differences show the importance of knowing the exact values of Q. Incorrect Q values can lead to unrealistic moduli and to noticeable phase differences of these viscoelastic coefficients.  相似文献   

12.
The propagation of seismic P and SV waves within inhomogeneous alluvial valleys has been investigated using the indirect boundary element method (IBEM). An improvement on the formulae published early, for the 2D Green's functions in an inhomogeneous medium is presented in this work. A modification has been done over these functions in view of its connection to the ray theory. An accuracy analysis validates these modified Green's functions computing the relative error in frequency domain for the SH case, and with a quantitative analysis obtaining envelope and phase misfits of the solution in time domain, for the P–SV case.  相似文献   

13.
Backus and Crampin derived analytical equations for estimating approximate phase-velocity variations in symmetry planes in weakly anisotropic media, where the coefficients of the equations are linear combinations of the elastic constants. We examine the application of similar equations to group-velocity variations in off-symmetry planes, where the coefficients of the equations are derived numerically. We estimate the accuracy of these equations over a range of anisotropic materials with transverse isotropy with both vertical and horizontal symmetry axes, and with combinations of transverse isotropy yielding orthorhombic symmetry. These modified equations are good approximations for up to 17% shear-wave anisotropy for propagations in symmetry planes for all waves in all symmetry systems examined, but are valid only for lower shear-wave anisotropy (up to 11%) in off-symmetry planes. We also obtain analytical moveout equations for the reflection of qP-, qSH-, and qSV- waves from a single interface for off-symmetry planes in anisotropic symmetry. The moveout equation consists of two terms: a hyperbolic moveout and a residual moveout, where the residual moveout is proportional to the degree of anisotropy and the spread length of the acquisition geometry. Numerical moveout curves are computed for a range of anisotropic materials to verify the analytical moveout equations.  相似文献   

14.
Converted PS-wave Reflection Coefficients in Weakly Anisotropic Media   总被引:1,自引:0,他引:1  
—?I derive converted P S-wave reflection coefficients at a planar weak-contrast interface separating two weakly anisotropic half-spaces using first-order perturbation theory. The general expressions are further specified for the interface separating any of the two following media: isotropic, transversely isotropic with a vertical symmetry axis (VTI), transversely isotropic with a horizontal symmetry axis (HTI) and orthorhombic. Relatively simple forms of small-angle reflection coefficients are also obtained. The coefficients are expressed as functions of Thomsen-type medium parameters and incidence and azimuthal phase angles. Derived expressions, as well as their application, are more complicated than the corresponding expressions for P P-wave reflection coefficients. General characteristics and pitfalls are discussed. Numerical tests reveal a good agreement between exact and approximate coefficients for most models presented.  相似文献   

15.
The boundary value problems most frequently encountered in studies of elastic wave propagation in stratified media can be formulated in terms of a finite number of linear, first order and ordinary differential equations with variable coefficients. Volterra (1887) has shown that solutions to such a system of equations are conveniently represented by the product integral, or propagator, of the matrix of coefficients. In this paper we summarize some of the better known properties of propagators plus numerica methods for their computation. When the dispersion relation is somem th order minor of the integral matrix it is possible to deal withm th minor propagators so that the dispersion relation is a single element of them th minor integral matrix. In this way one of the major sources of loss of numerical accuracy in computing the dispersion relation is avoided. Propagator equations forSH and forP-SV waves are given for both isotropic and transversely isotropic media. In addition, the second minor propagator equations forP-SV waves are given. Matrix polynomial approximations to the propagators, obtained from the method of mean coefficients by the Cayley-Hamilton theorem and the Lagrange-Sylvester, interpolation formula, are derived.  相似文献   

16.
We theoretically study the scattering ofP, SV andSH waves by a zonal distribution of cracks, which simulates a fault fracture zone. An investigation is conducted how the geometrical properties of the crack distribution and the frictional characteristics of the crack surface are reflected in the attenuation and dispersion of incident waves, as well as in the amplitudes of the transmitted and reflected waves from the zone. If the crack distribution within the fault zone changes temporally during the preparation process of the expected earthquake, it will be important for earthquake prediction to monitor it, utilizing the scattering-induced wave phenomena.We consider the two-dimensional problem. Aligned cracks with the same length are assumed to be randomly distributed in a zone with a finite width, on which elastic waves are assumed to be incident. The distribution of cracks is assumed to be homogeneous and sparse. The crack surface is assumed to be stress-free, or to undergo viscous friction; the latter case simulates fluid-filled cracks. The opening displacement of the crack is assumed to be negligibly small. The idea of the mean wave formalism is employed in the analysis, and Foldy's approximation is assumed.When the crack surface is stress-free, it is commonly observed for every wave mode (P, SV andSH) that the attenuation coefficientQ –1 peaks aroundka1, the phase velocity is almost independent ofk in the rangeka<1 and it increases monotonically withk in the rangeka>1, wherek is the intrinsicS wavenumber anda is the half length of the crack. The effect of the friction is to shift the peak ofQ –1 and the corner of the phase velocity curve to the low wavenumber range. The high wavenumber asymptote ofQ –1 is proportional tok –1 independently of model parameters and the wave modes. If the seismological observation thatQ –1 ofS waves has a peak at around 0.5 Hz in the earth's crust is combined with our results, the upper limit of crack size within the crust is estimated about 4 km. The information regarding the transmitted and reflected waves, such as the high wavenumber limit of the amplitude of the transmitted wave etc., allows estimation of the strength of the friction.  相似文献   

17.
The problem about the refraction of elastic waves at the interface of two half-spaces (rocks) filled with immiscible fluids is solved with the use of modified boundary conditions of the dynamics of saturated porous media [Nagy and Nayfeh, 1995]. The solution is obtained within the framework of the Frenkel’-Biot theory with allowance for the surface tension at the interface of fluids for a porous medium formed by two half-spaces, which differ only in the properties of the fluids filling them. Practically important cases of the reflection from the fluid-gas (water-air) and fluid-fluid (oil-water) interfaces are considered in detail. The calculations are performed for both harmonic waves and pulses. The possibility to determine in principle the structural factor characterizing the pore-space geometry of rocks from measured dynamic parameters of reflected waves is shown.  相似文献   

18.
Summary In this paper, the frequency equation for phase velocity of waves propagated in a laminated medium consisting of two eleastic layers of finite thickness under initial stresses, has been obtained. It has been shown that when wave length becomes very small compared to the thickness of each layer, the wave approaches two Rayleigh waves at the two outer surfaces with the possibility of Stoneley waves at the interface. The propagation ofSH-waves in the composite medium under initial stresses has also been discussed. A particular case has been taken to find the velocity of Love wave in the homogeneous half space under initial compressive stresses.Biot's incremental deformation theory has been used.  相似文献   

19.
20.
Reflection and refraction of plane wave through an interface between fluid and rock with elastic deformations on the basis of the acoustoelastic theory are considered. The effects of stress on the anisotropy and energy reflection and transmission coefficients are investigated. The incident wave plane can coincide with or deviate from planes of material symmetry. Elastic deformations are assumed to be locally homogeneous and to satisfy static boundary conditions. Numerical computations are carried out and comparisons are made with the results predicted in the presence and absence of initial stress. The changes in phase velocity, group velocity, and energy reflection and refraction coefficients due to the presence of stress are displayed graphically and discussed. The results show that the effect of stress depends on its magnitude, direction and form (uniaxial and biaxial).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号