首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Based on an extensive grid of stellar models between 13 and  25 M  and a wide range of metallicities, we have studied the light curves of core collapse supernovae, their application to cosmology and their evolutionary effects with redshift. The direct link between the hydrodynamics and radiation transport allows us to calculate monochromatic light curves.
With decreasing metallicity, Z , and increasing mass, progenitors tend to explode as compact blue supergiants (BSG) and produce subluminous supernovae that are approximately 1.5 mag dimmer than normal Type II supernovae (SNe II) with red supergiant (RSG) progenitors. Progenitors with small masses tend to explode as RSGs even at low Z . The consequence for testing the chemical evolution is obvious, namely a strong bias when using the statistics of core collapse supernovae to determine the history of star formation.
Our study is limited in scope with respect to the explosion energies and the production of radioactive Ni. Within the class of extreme SNe II-P supernovae, the light curves are rather insensitive with respect to the progenitor mass and explosion energy compared with analytic models based on parametrized stellar structures. We expect a wider range of brightness due to variations in 56Ni because radioactive energy is a significant source of luminosity. However, the overall insensitivity of light curves may allow their use as quasi-standard candles for distance determination.  相似文献   

3.
By assuming an aspherical stellar wind with an equatorial disc from a red giant, we investigate the production of Type Ia supernovae (SNe Ia) via a symbiotic channel. We estimate that the Galactic birthrate of SNe Ia via the symbiotic channel is between  1.03 × 10−3  and  2.27 × 10−5 yr−1  , while the delay time of SNe Ia has a wide range from ∼0.07 to 5 Gyr. The results are greatly affected by the outflow velocity and mass-loss rate of the equatorial disc. Using our model, we discuss the progenitors of SN 2002ic and SN 2006X.  相似文献   

4.
Type Ia supernovae(SNe Ia) play an important role in studies of cosmology and galactic chemical evolution.They are believed to be thermonuclear explosions of carbon-oxygen white dwarfs(CO WDs)when their masses approach the Chandrasekar(Ch) mass limit.However,it is still not completely understood how a CO WD increases its mass to the Ch-mass limit in the classical single-degenerate(SD) model.In this paper,we studied the mass accretion process in the SD model to examine whether the WD can explode as an SN Ia.Employing the stellar evolution code called modules for experiments in stellar astrophysics(MESA),we simulated the He accretion process onto CO WDs.We found that the WD can increase its mass to the Ch-mass limit through the SD model and explosive carbon ignition finally occurs in its center,which will lead to an SN Ia explosion.Our results imply that SNe Ia can be produced from the SD model through steady helium accretion.Moreover,this work can provide initial input parameters for explosion models of SNe Ia.  相似文献   

5.
Employing Eggleton’s stellar evolution code with the optically thick wind assumption, we have systematically studied the WD + He star channel of Type Ia supernovae (SNe Ia), in which a carbon–oxygen WD accretes material from a He main-sequence star or a He subgiant to increase its mass to the Chandrasekhar mass. We mapped out the parameter spaces for producing SNe Ia. According to a detailed binary population synthesis approach, we find that the Galactic SN Ia birthrate from this channel is ~0.3×10?3 yr?1, and that this channel can produce SNe Ia with short delay times (~45–140 Myr). We also find that the surviving companion stars in this channel have a high spatial velocity (>400 km/s) after the SN explosion, which could be an alternative origin for hypervelocity stars (HVSs), especially for HVSs such as US 708.  相似文献   

6.
A few Type Ia supernovae (SNe Ia) have been suggested to be an explosion of a super-Chandrasekhar-mass white dwarf (WD) in order to account for their large luminosities, requiring a large amount of 56Ni. However, the candidate overluminous SNe Ia 2003fg, 2006gz and (moderately overluminous) SN 1991T have very different observational features: the characteristic time-scale and velocity are very different. We examine if and how the diversity can be explained, by one-dimensional spherical radiation transport calculations covering a wide range of model parameters (e.g. WD mass). The observations of SN 2006gz are naturally explained by the super-Chandrasekhar-mass model. SN 1991T represents a marginal case, which may either be a Chandrasekhar or a super-Chandrasekhar-mass WD explosion. In contrast, the low velocity and short time-scale seen in SN 2003fg indicate that the ejecta mass is smaller than the Chandrasekhar mass, which is in apparent contradiction to the large luminosity. We suggest that the problem is solved if the progenitor WD, and thus the SN explosion, is aspherical. This may reflect a rapid rotation of the progenitor star, likely a consequence of the super-Chandrasekhar-mass WD progenitor. The observed differences between SNe 2003fg and 2006gz may be attributed to different viewing orientations.  相似文献   

7.
We propose a method to remove the mass-sheet degeneracy that arises when the mass of galaxy clusters is inferred from gravitational shear. The method utilizes high-redshift standard candles that undergo weak lensing. Natural candidates for such standard candles are type Ia supernovae (SNe Ia).
When corrected with the light-curve shape (LCS), the peak magnitude of SNe Ia provides a standard candle with an uncertainty in apparent magnitude of Δ m ≃0.1–0.2. Gravitational magnification of a background SN Ia by an intervening cluster would cause a mismatch between the observed SN Ia peak magnitude compared with that expected from its LCS and redshift. The average detection rate for SNe Ia with a significant mismatch of ≥2Δ m behind a cluster at z ≃0.05–0.15 is about 1–2 supernovae per cluster per year at J , I , R ≲25–26.
Since SNe are point-like sources for a limited period, they can experience significant microlensing by massive compact halo objects (MACHOs) in the intracluster medium. Microlensing events caused by MACHOs of ∼10−4 M⊙ are expected to have time-scales similar to that of the SN light curve. Both the magnification curve by a MACHO and the light curve of a SN Ia have characteristic shapes that allow us to separate them. Microlensing events caused by MACHOs of smaller mass can unambiguously be identified in the SN light curve if the latter is continuously monitored. The average number of identifiable microlensing events per nearby cluster ( z ≲0.05) per year is ∼0.02 ( f /0.01), where f is the fraction of the cluster mass in MACHOs of masses 10−7< M macho/M⊙<10−4.  相似文献   

8.
The fragmentation process in collapsing clouds with various metallicities is studied using three-dimensional nested-grid hydrodynamics. Initial clouds are specified by three parameters: cloud metallicity, initial rotation energy and initial cloud shape. For different combinations of these parameters, we calculate 480 models in total and study cloud evolution, fragmentation conditions, orbital separation and binary frequency. For the cloud to fragment during collapse, the initial angular momentum must be higher than a threshold value, which decreases with decreasing metallicity. Although the exact fragmentation conditions depend also on the initial cloud shape, this dependence is only modest. Our results indicate a higher binary frequency in lower metallicity gas. In particular, with the same median rotation parameter as in the solar neighbourhood, a majority of stars are born as members of binary/multiple systems for  <10−4 Z  . With initial mass  <0.1 M  , if fragments are ejected in embryo from the host clouds by multibody interaction, they evolve to substellar-mass objects. This provides a formation channel for low-mass stars in zero- or low-metallicity environments.  相似文献   

9.
Thanks to a stellar evolution code that is able to compute through the C flash we link the binary population synthesis of single degenerate progenitors of Type Ia supernovae (SNe Ia) to their physical condition at the time of ignition. We show that there is a large range of possible ignition densities and we detail how their probability distribution depends on the accretion properties. The low-density peak of this distribution qualitatively reminds of the clustering of the luminosities of Branch-normal SNe Ia. We tighten the possible range of initial physical conditions for explosion models: they form a one-parameter family, independent of the metallicity. We discuss how these results may be modified if we were to relax our hypothesis of a permanent Hachisu wind or if we were to include electron captures.  相似文献   

10.
The search for the progenitors of six core-collapse supernovae (CCSNe) in archival Hubble Space Telescope ( HST ) WFPC2 pre-explosion imaging is presented. These SNe are 1999an, 1999br, 1999ev, 2000ds, 2000ew and 2001B. Post-explosion imaging of the SNe, with the HST ACS/WFC, has been utilized with the technique of differential astrometry to identify the progenitor locations on the pre-explosion imaging. SNe 1999br, 1999ev, 2000ew and 2001B are recovered in late-time imaging, and estimates of the progenitor locations on the pre-explosion imaging, with subpixel accuracy, have been made. Only the progenitor of the Type II-P SN 1999ev has been recovered, on pre-explosion F555W imaging, at a 4.8σ significance level. Assuming a red supergiant progenitor, the pre-explosion observation is consistent with   M ZAMS= 15–18 M  . The progenitors of the other five SNe were below the 3σ detection threshold of the pre-explosion observations. The detection thresholds were translated to mass limits for the progenitors by comparison with stellar evolution models. Pre-explosion observations of the peculiarly faint SN 1999br limit the mass of a red supergiant progenitor to   M ZAMS < 12 M  . Analysis has been extended, from previous studies, to include possible detections of high- T eff, high-mass stars by conducting synthetic photometry of model Wolf–Rayet star spectra. The mass limits for the Type II-P SNe 1999an and 1999br are consistent with previously determined mass limits for this type of SN. The detection limits for the progenitors of the Type Ibc SNe (2000ds, 2000ew and 2001B) do not permit differentiation between high-mass Wolf–Rayet progenitors or low-mass progenitors in binaries.  相似文献   

11.
Dust formation in primordial Type II supernovae   总被引:1,自引:0,他引:1  
We have investigated the formation of dust in the ejecta of Type II supernovae (SNe), mostly of primordial composition, to answer the question of where the first solid particles are formed in the Universe. However, we have also considered non-zero progenitor metallicity values up to Z = Z . The calculations are based on standard nucleation theory, and the scheme has been tested for the first time on the well-studied case of SN1987A, yielding results that are in agreement with the available data. We find that: (i) the first dust grains are predominantly made of silicates, amorphous carbon (AC), magnetite and corundum; and (ii) the largest grains are the AC ones, with sizes around 300 Å, whereas the other grain types have smaller radii, around 10–20 Å . The grain size distribution depends somewhat on the thermodynamics of the ejecta expansion, and variations in the results by a factor ≈2 might occur within reasonable estimates of the relevant parameters. Also, and for the same reason, the grain size distribution is essentially unaffected by metallicity changes. The predictions on the amount of dust formed are very robust: for Z =0 , we find that SNe with masses in the range (12–35) M produce about 0.08 M≲ M d≲0.3 M of dust per supernova. The above range increases by roughly three times as the metallicity is increased to solar values. We discuss the implications and the cosmological consequences of the results.  相似文献   

12.
Type Ia supernovae(SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs(CO WDs), and are believed to be excellent cosmological distance indicators due to their high luminosity and remarkable uniformity. However, there exists a diversity among SNe Ia, and a poor understanding of the diversity hampers the improvement of the accuracy of cosmological distance measurements. The variations of the ratios of carbon to oxygen(C/O) of WDs at explosion are suggested to contribute to the diversity. In the canonical model of SNe Ia, a CO WD accretes matter from its companion and increases its mass till the Chandrasekhar mass limit when the WD explodes. In this work, we studied the C/O ratio for accreting CO WDs. Employing the stellar evolution code MESA, we simulated the accretion of He-rich material onto CO WDs with different initial WD masses and different mass accretion rates. We found that the C/O ratio varies for different cases. The C/O ratio of He-accreting CO WDs at explosion increases with a decreasing initial WD mass or a decreasing accretion rate. The various C/O ratios may, therefore, contribute to the diversity of SNe Ia.  相似文献   

13.
The single-degenerate (SD) channel for the progenitors of type Ia supernovae (SNe Ia) is one of the most popular channels, in which a carbon–oxygen white dwarf (CO WD) accretes hydrogen-rich material from its companion, increases its mass to the Chandrasekhar mass limit, and then explodes as a SN Ia. We show the initial and final parameter space for SNe Ia in a ( $\log P^{\mathrm{i}},M_{2}^{\mathrm{i}}$ ) plane and find that the positions of some famous recurrent novae, as well as a supersoft X-ray source (SSS), RX J0513.9-6951, are well explained by our model. The model can also explain the space velocity and mass of Tycho G, which is now suggested to be the companion star of Tycho’s supernova. Our study indicates that the SSS, V Sge, might be the potential progenitor of supernovae like SN 2002ic if the delayed dynamical-instability model due to Han and Podsiadlowski (Mon. Not. R. Astron. Soc. 368:1095, 2006) is appropriate. Following the work of Meng et al. (Mon. Not. R. Astron. Soc. 395:2103, 2009a), we found that the SD model (WD+MS) with an optically thick wind can explain the birth rate of supernovae like SN 2006X and reproduce the distribution of the color excess of SNe Ia. The model also predicts that at least 75% of all SNe Ia may show a polarization signal in their spectra.  相似文献   

14.
Type Ia supernovae(SNe Ia) play a prominent role in understanding the evolution of the Universe. They are thought to be thermonuclear explosions of mass-accreting carbon-oxygen white dwarfs(CO WDs) in binaries, although the mass donors of the accreting WDs are still not well determined. In this article, I review recent studies on mass-accreting WDs, including H-and He-accreting WDs. I also review currently most studied progenitor models of SNe Ia, i.e., the single-degenerate model(including the WD+MS channel, the WD+RG channel and the WD+He star channel), the doubledegenerate model(including the violent merger scenario) and the sub-Chandrasekhar mass model.Recent progress on these progenitor models is discussed, including the initial parameter space for producing SNe Ia, the binary evolutionary paths to SNe Ia, the progenitor candidates for SNe Ia, the possible surviving companion stars of SNe Ia, some observational constraints, etc. Some other potential progenitor models of SNe Ia are also summarized, including the hybrid CONe WD model, the core-degenerate model, the double WD collision model, the spin-up/spin-down model and the model of WDs near black holes. To date, it seems that two or more progenitor models are needed to explain the observed diversity among SNe Ia.  相似文献   

15.
Type Ia supernovae(SNe Ia)play an important role in the study of cosmic evolution,especially in cosmology.There are several progenitor models for SNe Ia proposed in the past years.By considering the effect of accretion disk instability on the evolution of white dwarf(WD)binaries,we performed detailed binary evolution calculations for the WD+red-giant(RG)channel of SNe Ia,in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit.According to these calcu...  相似文献   

16.
We present photometric and spectroscopic data of the Type II-P supernova (SN II-P) 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first Type II supernova (SN) to have a directly confirmed red supergiant (RSG) progenitor. We compare SN 2003gd to SN 1999em, a similar SN II-P, and estimate an explosion date of 2003 March 18. We determine a reddening towards the SN of   E ( B − V ) = 0.14 ± 0.06  , using three different methods. We also calculate three new distances to M74 of  9.6 ± 2.8, 7.7 ± 1.7  and  9.6 ± 2.2 Mpc  . The former was estimated using the standard candle method (SCM), for Type II supernovae (SNe II), and the latter two using the brightest supergiants method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of  9.3 ± 1.8 Mpc  . SN 2003gd was found to have a lower tail luminosity compared with other normal Type II-P supernovae (SNe II-P) bringing into question the nature of this SN. We present a discussion concluding that this is a normal SN II-P, which is consistent with the observed progenitor mass of  8+4−2 M  .  相似文献   

17.
Type Ia supernovae (SNe Ia) play an important role in astrophysics and are crucial for the studies of stellar evolution, galaxy evolution and cosmology. They are generally thought to be thermonuclear explosions of accreting carbon–oxygen white dwarfs (CO WDs) in close binaries, however, the nature of the mass donor star is still unclear. In this article, we review various progenitor models proposed in the past years and summarize many observational results that can be used to put constraints on the nature of their progenitors. We also discuss the origin of SN Ia diversity and the impacts of SN Ia progenitors on some fields. The currently favourable progenitor model is the single-degenerate (SD) model, in which the WD accretes material from a non-degenerate companion star. This model may explain the similarities of most SNe Ia. It has long been argued that the double-degenerate (DD) model, which involves the merger of two CO WDs, may lead to an accretion-induced collapse rather than a thermonuclear explosion. However, recent observations of a few SNe Ia seem to support the DD model, and this model can produce normal SN Ia explosion under certain conditions. Additionally, the sub-luminous SNe Ia may be explained by the sub-Chandrasekhar mass model. At present, it seems likely that more than one progenitor model, including some variants of the SD and DD models, may be required to explain the observed diversity of SNe Ia.  相似文献   

18.
The properties of underluminous Type Ia supernovae (SNe Ia) of the 91bg subclass have yet to be theoretically understood. Here, we take a closer look at the structure of the dim SN Ia 2005bl. We infer the abundance and density profiles needed to reproduce the observed spectral evolution between −6 d and  +12.9 d  with respect to B maximum. Initially, we assume the density structure of the standard explosion model W7; then we test whether better fits to the observed spectra can be obtained using modified density profiles with different total masses and kinetic energies. Compared to normal SNe Ia, we find a lack of burning products especially in the rapidly expanding outer layers  ( v ≳ 15 000 km s−1)  . The zone between ∼8500 and 15 000 km s−1 is dominated by oxygen and includes some amount of intermediate-mass elements. At lower velocities, intermediate-mass elements dominate. This holds down to the lowest zones investigated in this work. This fact, together with negligible-to-moderate abundances of Fe-group elements, indicates large-scale incomplete Si burning or explosive O burning, possibly in a detonation at low densities. Consistently with the reduced nucleosynthesis, we find hints of a kinetic energy lower than that of a canonical SN Ia: the spectra strongly favour reduced densities at  ≳13 000 km s−1  compared to W7, and are very well fitted using a rescaled W7 model with original mass  (1.38 M)  , but a kinetic energy reduced by ∼30 per cent (i.e. from  1.33 × 1051  to  0.93 × 1051 erg  ).  相似文献   

19.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

20.
Recent evidence of a young progenitor population for many Type Ia supernovae (SNe Ia) raises the possibility that evolved intermediate-mass progenitor stars may be detected in pre-explosion images. NGC 1316, a radio galaxy in the Fornax cluster, is a prolific producer of SNe Ia, with four detected since 1980. We analyse Hubble Space Telescope ( HST ) pre-explosion images of the sites of two of the SNe Ia that exploded in this galaxy, SN2006dd (a normal Type Ia) and SN2006mr (likely a subluminous, 1991bg-like, SN Ia). Astrometric positions are obtained from optical and near-infrared ground-based images of the events. We find no candidate point sources at either location, and set upper limits on the flux in B, V and I from any such progenitors. We also estimate the amount of extinction that could be present, based on analysis of the surface-brightness inhomogeneities in the HST images themselves. At the distance of NGC 1316, the limits correspond to absolute magnitudes of  ∼−5.5, −5.4  and −6.0 mag in   M B , M V   and   M I   , respectively. Comparison to stellar evolution models argues against the presence at the supernova sites, 3 yr prior to the explosion, of normal stars with initial masses  ≳6 M  at the tip of their asymptotic-giant branch (AGB) evolution, young post-AGB stars that had initial masses  ≳4 M  and post-red giant stars of initial masses  ≳9 M  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号