首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用地面异常线圈对直升机时域航空电磁探测系统进行标定时,发射-接收线圈姿态的变化将导致实测数据产生误差,影响标定的精度.本文基于时间域航空电磁系统,计算了发射-接收线圈姿态任意变化时异常线圈的电磁响应,提出了主成分分析-径向基神经网络(PCA-RBF)的拟合算法,采用主成分分析法提取飞行几何参数的贡献率,利用径向基神经网络法对电磁响应进行了测线剖面的批量数据拟合,并对理论仿真和河南桐柏直升机飞行试验数据进行拟合分析,单一异常体理论数据的绝对误差平均值小于20nV·m-2,双异常体理论数据绝对误差平均值为160nV·m-2.野外实测数据在异常线圈中心位置的拟合相对误差小于1%,整条剖面测线的拟合相对误差小于±6%,平均值为2.5%.结果表明PCA-RBF拟合算法能够较好地实现航空电磁系统飞行参数的拟合,为航空电磁系统海量实测数据的快速处理提供了新方法.  相似文献   

2.
Gravity derived only from airborne gravity gradient measurements with a normal error distribution will have an error that increases with wavelength. It is straightforward in principle to use sparsely sampled regional gravimeter data to provide the long wavelength information, thereby conforming the derived gravity to the regional gravity. Regional surface or airborne gravimeter data are not always available and can be difficult and expensive to collect in many of the areas where an airborne gravity gradiometer survey is flown. However the recent release by the Danish National Space Centre of the DNSC08 global gravity anomaly data has provided regional gravity data for the entire earth of adequate quality for this purpose. Studies over three areas, including comparisons with ground, marine and airborne gravimetry, demonstrate the validity of this approach. Future improvements in global gravity anomaly data are expected, particularly as the product from the recently launched Gravity field and steady‐state Ocean Circulation Explorer (GOCE) satellite becomes available and these will lead directly to an improvement in the very wide bandwidth gravity available after conforming gravity derived from gravity gradiometry with the global gravity.  相似文献   

3.
Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy,and can provide fundamental information for geophysics,geodynamics,seismology,and mineral exploration.Rectangular harmonic analysis(RHA)is proposed for regional gravity field modeling in this paper.By solving the Laplace’s equation of gravitational potential in local Cartesian coordinate system,the rectangular harmonic expansions of disturbing potential,gravity anomaly,gravity disturbance,geoid undulation and deflection of the vertical are derived,and so are the formula for signal degree variance and error degree variance of the rectangular harmonic coefficients(RHC).We also present the mathematical model and detailed algorithm for the solution of RHC using RHA from gravity observations.In order to reduce the edge effects caused by periodic continuation in RHA,we propose the strategy of extending the size of computation domain.The RHA-based modeling method is validated by conducting numerical experiments based on simulated ground and airborne gravity data that are generated from geopotential model EGM2008 and contaminated by Gauss white noise with standard deviation of 2 mGal.The accuracy of the 2.5′×2.5′geoid undulations computed from ground and airborne gravity data is 1 and 1.4cm,respectively.The standard error of the gravity disturbances that downward continued from the flight height of 4 km to the geoid is only 3.1 mGal.Numerical results confirm that RHA is able to provide a reliable and accurate regional gravity field model,which may be a new option for the representation of the fine structure of regional gravity field.  相似文献   

4.
When anomalous gravity gradient signals provide a large signal‐to‐noise ratio, airborne and marine surveys can be considered with wide line spacing. In these cases, spatial resolution and sampling requirements become the limiting factors for specifying the line spacing, rather than anomaly detectability. This situation is analysed by generating known signals from a geological model and then sub‐sampling them using a simulated airborne gravity gradient survey with a line spacing much wider than the characteristic anomaly size. The data are processed using an equivalent source inversion, which is used subsequently to predict and grid the field in‐between the survey lines by means of forward calculations. Spatial and spectral error analysis is used to quantify the accuracy and resolution of the processed data and the advantages of acquiring multiple gravity gradient components are demonstrated. With measurements of the full tensor along survey lines spaced at 4 × 4 km, it is shown that the vertical gravity gradient can be reconstructed accurately over a bandwidth of 2 km with spatial root‐mean square errors less than 30%. A real airborne full‐tensor gravity gradient survey is presented to confirm the synthetic analysis in a practical situation.  相似文献   

5.
Recent advancements in geophysical exploration have been realized through reliably integrating unmanned aerial vehicle platforms with lightweight, high-resolution magnetometer payloads. Unmanned aerial vehicle aeromagnetic surveys can provide a contemporary data product between the two end-members of coverage and resolution attained using manned airborne and terrestrial magnetic surveys. This new data product is achievable because unmanned aerial vehicle platforms can safely traverse with magnetometer payloads at flight elevations closer to ground targets than manned airborne surveys, while also delivering an increased coverage rate compared to walking conventional terrestrial surveys. This is a promising new development for geophysical and mineral exploration applications, especially in variable terrains. A three-dimensional unmanned aerial vehicle aeromagnetic survey was conducted within the Shebandowan Greenstone Belt, northwest of Thunder Bay, Ontario, Canada, in July 2017. A series of two-dimensional grids (∼500 m × 700 m) were flown at approximate elevations of 35, 45 and 70 m above ground level using a Dà-Jiāng Innovations multi-rotor unmanned aerial vehicle (S900) and a GEM Systems, Inc., Potassium Vapour Magnetometer (GSMP-35U). In total, over 48 line-km of unmanned aerial vehicle aeromagnetic data were flown with a line spacing of 25 m. The collected aeromagnetic data were compared to a regional heliborne aeromagnetic survey flown at an elevation of approximately 85 m above the terrain, with a line spacing of 100 m, as well as a follow-up terrestrial magnetic survey. The first vertical derivative of the gathered unmanned aerial vehicle total magnetic field data was calculated both directly between each of the different flight elevations, and indirectly by calculating the values predicted using upward continuation. This case study demonstrates that low flight elevation unmanned aerial vehicle aeromagnetic surveys can reliably collect industry standard total magnetic field measurements at an increased resolution when compared to manned airborne magnetic surveys. The enhanced interpretation potential provided by this approach also aided in delineating structural controls and hydrothermal fluid migration pathways (a pair of adjacent shear zones) related to gold mineralization on site. These structural features were not clearly resolved in the regional manned airborne magnetic data alone, further demonstrating the utility of applying high-resolution unmanned aerial vehicle aeromagnetic surveys to mineral exploration applications. The conclusions and interpretations drawn from the unmanned aerial vehicle aeromagnetic data, coupled with historical data, were applied to make a new gold mineralization discovery on the site, assayed at 15.7 g/t.  相似文献   

6.
李光  渠晓东  陈洁  黄玲  方广有 《地球物理学报》2016,59(10):3917-3926
磁偶极子的航空频率域电磁法仪器在飞行测量的过程中由于仪器偏置的存在,且仪器偏置会随着外部气压、温度等环境因素以及收发线圈晃动的影响而呈现非线性变化,使得观测数据出现误差,因此需要对仪器偏置进行校正.而传统的在测线飞行前后将仪器抬至高空的"零场值"标定方法具有成本高、受测区环境影响大以及采用线性插值获取测线飞行过程中仪器偏置的精度低等缺点.本文根据仪器偏置与仪器姿态角变化无关的特性,通过测得仪器的姿态角信息,在满足重叠偶极子模型的条件下,实现对仪器偏置的高精度实时校正.模型仿真结果表明,在30m常规飞行高度下,该方法实时测得的仪器偏置精度接近于110m高空测得的精度;校正后仪器偏置的绝对误差与理论二次场的比值即相对误差小于5%,满足反演大地电导率的精度要求.该方法不仅减少了飞行的工作量,降低了飞行成本和飞行难度,而且可更加精确地获得测线飞行过程中仪器偏置的非线性变化值,提高航测数据的观测精度.  相似文献   

7.
An airborne gravity campaign was carried out at the Dome-C survey area in East Antarctica between the 17th and 22nd of January 2013, in order to provide data for an experiment to validate GOCE satellite gravity gradients. After typical filtering for airborne gravity data, the cross-over error statistics for the few crossing points are 11.3 mGal root mean square (rms) error, corresponding to an rms line error of 8.0 mGal. This number is relatively large due to the rough flight conditions, short lines and field handling procedures used. Comparison of the airborne gravity data with GOCE RL4 spherical harmonic models confirmed the quality of the airborne data and that they contain more high-frequency signal than the global models. First, the airborne gravity data were upward continued to GOCE altitude to predict gravity gradients in the local North-East-Up reference frame. In this step, the least squares collocation using the ITGGRACE2010S field to degree and order 90 as reference field, which is subtracted from both the airborne gravity and GOCE gravity gradients, was applied. Then, the predicted gradients were rotated to the gradiometer reference frame using level 1 attitude quaternion data. The validation with the airborne gravity data was limited to the accurate gradient anomalies (TXX, TYY, TZZ and TXZ) where the long-wavelength information of the GOCE gradients has been replaced with GOCO03s signal to avoid contamination with GOCE gradient errors at these wavelengths. The comparison shows standard deviations between the predicted and GOCE gradient anomalies TXX, TYY, TZZ and TXZ of 9.9, 11.5, 11.6 and 10.4 mE, respectively. A more precise airborne gravity survey of the southern polar gap which is not observed by GOCE would thus provide gradient predictions at a better accuracy, complementing the GOCE coverage in this region.  相似文献   

8.
基于异常线圈的时间域AEM系统测试和标定方法研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为了检验和测试时间域航空电磁系统的测量精度和有效性,采用地面铺设闭合的异常线圈模拟地下有限导体的方法,将异常线圈的电磁响应理论值与系统实测数据进行拟合分析,来确定系统误差和飞行几何参数误差.在计算异常线圈电磁响应的基础上,研究了衰减曲线、剖面曲线与线圈的电性、几何参数关系,设计了野外测试实验方案.在长春市大鹅岛附近,采用吊车进行了系统测试,测试结果表明:单点实测数据的平均绝对误差为0.48 mV,系统相对误差小于1%,飞行高度误差为0.4 m、水平偏移误差为0.2 m.基于异常线圈进行时间域航空电磁系统的测试和标定,是一种准确、快速、经济可行的方法,具有野外施工便捷、参数调整灵活等特点,适用于任何时间域电磁测量系统的检测.  相似文献   

9.
飞行高度同时反演的固定翼航空瞬变电磁-维反演   总被引:4,自引:0,他引:4       下载免费PDF全文
航空电磁测量记录中,不仅感生电动势测量数据有观测误差,而且高度计测量数据也有误差,直接进行常规反演往往导致反演结果不可靠,研究飞行高度数据有误差下的反演算法具有实际意义.本文以层状模型的固定翼时间域航空电磁多分量理论响应数据为例,提出了两种针对飞行高度计记录数据有误差时的正则化反演算法,一个是自适应正则化反演方法,另一...  相似文献   

10.
复杂地形条件下航空伽玛能谱地形改正方法探讨   总被引:5,自引:0,他引:5       下载免费PDF全文
应用矩形辐射体航空伽玛辐射场理论,研究应用于复杂地形条件下的航空伽玛能谱资料的地形改正方法,并针对该方法进行验证. 本文利用航空物探测量过程中获得的DTM数据(达到了地形改正所需的地形起伏数据精度),应用矩形辐射体航空伽玛辐射场理论,根据地面辐射体与航空伽玛场分布之间的正演关系,对航空伽玛能谱解释方法的原理进行了正演分析和反演推导. 探索出一种按影响角进行地形改正的方法. 该方法特点是适合于任意飞行方式(缓地形和水平飞行均可)和任意地形条件航空伽玛能谱的逐点地形改正. 结果表明该地形改正方法能够基本消除航空伽玛能谱测量中的地形起伏产生的影响,经地形修正后的航空伽玛能谱异常能较正确地反映地面辐射体的真实情况.  相似文献   

11.
In this paper, we describe a non‐linear constrained inversion technique for 2D interpretation of high resolution magnetic field data along flight lines using a simple dike model. We first estimate the strike direction of a quasi 2D structure based on the eigenvector corresponding to the minimum eigenvalue of the pseudogravity gradient tensor derived from gridded, low‐pass filtered magnetic field anomalies, assuming that the magnetization direction is known. Then the measured magnetic field can be transformed into the strike coordinate system and all magnetic dike parameters – horizontal position, depth to the top, dip angle, width and susceptibility contrast – can be estimated by non‐linear least squares inversion of the high resolution magnetic field data along the flight lines. We use the Levenberg‐Marquardt algorithm together with the trust‐region‐reflective method enabling users to define inequality constraints on model parameters such that the estimated parameters are always in a trust region. Assuming that the maximum of the calculated gzz (vertical gradient of the pseudogravity field) is approximately located above the causative body, data points enclosed by a window, along the profile, centred at the maximum of gzz are used in the inversion scheme for estimating the dike parameters. The size of the window is increased until it exceeds a predefined limit. Then the solution corresponding to the minimum data fit error is chosen as the most reliable one. Using synthetic data we study the effect of random noise and interfering sources on the estimated models and we apply our method to a new aeromagnetic data set from the Särna area, west central Sweden including constraints from laboratory measurements on rock samples from the area.  相似文献   

12.
We report here the results obtained during a feasibility study that was pursued in order to evaluate the performances of absolute airborne gravimetry. In contrast to relative systems, which use spring‐type gravimeters, each measurement acquired by absolute systems is independent from the others and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and variation of the calibration factor. After a validation of the dynamic performance of the experimental setup in a moving truck, a comparison between the experimental airborne data retrieved over the Swiss Alps and those obtained by ground upward continuation at flight altitude allow us to state that airborne absolute gravimetry is feasible. The first test flight shows a spatial resolution comparable to those obtained by relative airborne gravimetry. For a wavelength on the order of 12 km the absolute value of gravity can be evaluated with an uncertainty of 6.9 mGal.  相似文献   

13.
Two different methods for the construction of an approximation to bicubic splines for interpolating irregularly spaced two-dimensional data are described. These are referred to as the least squares line (LSL) and linear segment (LINSEG) construction procedures. A quantitative test is devised for investigating the absolute accuracy and efficiency of the two spline interpolation procedures. The test involves (i) laying of artificial flight lines on the analytically known field of a model, (ii) interpolation of field values along the flight lines and their subtraction from the original field values to compute the residuals. This test is applied on fields due to four models (three prism models and one dyke model) placed at different depths below the flight lines, and for each case the error estimates (the mean error, the maximum error and the standard deviation) are tabulated. An analysis of the error estimates shows in all cases the LSL interpolation to be more accurate than the LINSEG, although the latter is about 50% faster in computer time. The relative accuracy and efficiency of the LSL interpolation is also tested against a recent method based on harmonization procedure, which shows the latter to be more precise, though much slower in speed.  相似文献   

14.
直升机航空TEM中心回线线圈姿态校正的理论研究   总被引:9,自引:8,他引:1       下载免费PDF全文
在直升机航空电磁测量时,固定在吊舱内的发射-接收线圈受飞行速度、飞机颠簸、风向等影响,会发生旋转,导致线圈与大地之间的耦合发生变化,给测量的电磁数据带来姿态误差,因此,研究航空线圈姿态校正非常重要.本文在建立吊舱和大地系统双坐标系的基础上,确定了吊舱旋转时,双坐标系之间变量变换的旋转矩阵,推导出层状大地垂直圆线圈姿态变化时航空电磁响应的计算表达式,以及线圈发生摇摆、俯仰旋转时的电磁响应系数,仿真研究了线圈姿态变化对电磁测量的影响,提出了姿态误差的几何校正方法,为航空电磁测量数据的精确处理和解释奠定了理论基础.  相似文献   

15.
Wave field reconstruction – the estimation of a three‐dimensional (3D) wave field representing upgoing, downgoing or the combined total pressure at an arbitrary point within a marine streamer array – is enabled by simultaneous measurements of the crossline and vertical components of particle acceleration in addition to pressure in a multicomponent marine streamer. We examine a repeated sail line of North Sea data acquired by a prototype multicomponent towed‐streamer array for both wave field reconstruction fidelity (or accuracy) and reconstruction repeatability. Data from six cables, finely sampled in‐line but spaced at 75 m crossline, are reconstructed and placed on a rectangular data grid uniformly spaced at 6.25 m in‐line and crossline. Benchmarks are generated using recorded pressure data and compared with wave fields reconstructed from pressure alone, and from combinations of pressure, crossline acceleration and vertical acceleration. We find that reconstruction using pressure and both crossline and vertical acceleration has excellent fidelity, recapturing highly aliased diffractions that are lost by interpolation of pressure‐only data. We model wave field reconstruction error as a linear function of distance from the nearest physical sensor and find, for this data set with some mismatched shot positions, that the reconstructed wave field error sensitivity to sensor mispositioning is one‐third that of the recorded wave field sensitivity. Multicomponent reconstruction is also more repeatable, outperforming single‐component reconstruction in which wave field mismatch correlates with geometry mismatch. We find that adequate repeatability may mask poor reconstruction fidelity and that aliased reconstructions will repeat if the survey geometry repeats. Although the multicomponent 3D data have only 500 m in‐line aperture, limiting the attenuation of non‐repeating multiples, the level of repeatability achieved is extremely encouraging compared to full‐aperture, pressure‐only, time‐lapse data sets at an equivalent stage of processing.  相似文献   

16.
Accurate modelling of the conductivity structure of mineralisations can often be difficult. In order to remedy this, a parametric approach is often used. We have developed a parametric thin‐sheet code, with a variable overburden. The code is capable of performing inversions of time‐domain airborne electromagnetic data, and it has been tested successfully on both synthetic data and field data. The code implements an integral solution containing one or more conductive sheets, buried in a half‐space with a laterally varying conductive overburden. This implementation increases the area of applicability compared to, for example, codes operating in free space, but it comes with a significant increase in computational cost. To minimise the cost, the code is parallelised using OpenMP and heavily optimised, which means that inversions of field data can be performed in hours on multiprocessor desktop computers. The code models the full system transfer function of the electromagnetic system, including variable flight height. The code is demonstrated with a synthetic example imitating a mineralisation buried underneath a conductive meadow. As a field example, the Valen mineral deposit, which is a graphite mineral deposit located in a variable overburden, is successfully inverted. Our results match well with previous models of the deposit; however, our predicted sheet remains inconclusive. These examples collectively demonstrate the effectiveness of our thin‐sheet code.  相似文献   

17.
通过联合全球重力位模型(EGM2008)、航空重力扰动数据和剩余地形模型(RTM)数据,基于频谱域(二维FFT变换)和空间域(Stokes数值积分)算法对毛乌素测区GT-2A航空重力测量系统采集的空中测线后处理重力扰动数据进行解算,构建了该地区的航空重力梯度扰动全张量.(1)残余航空重力扰动延拓结果表明:残余航空重力扰动经向下延拓至大地水准面,再向上延拓至航空高度后与原数据差值的标准差为1.0078 mGal,考虑边缘效应后,内缩计算范围得到的差值标准差减小至0.1269 mGal.(2)基于残余重力扰动数据(原航空高度数据及向下延拓数据),通过不同方案解算得到的梯度扰动结果表明:两种方案得到的研究区域重力梯度扰动各分量之差的最大标准差为6.4798E(Γyz分量),最小标准差为2.6968E(Γxy分量),内缩计算范围后得到的差值标准差最大值为1.8307E(Γzz分量),最小值为0.7223E(Γyz分量).本文的思路和方法可为未来我国自主构建航空重力梯度标定场提供参考.  相似文献   

18.
多辐射源地空瞬变电磁响应三维数值模拟研究   总被引:1,自引:0,他引:1  
地空瞬变电磁法结合地面和航空电磁法的优点,可实现探测深度和工作效率的平衡.当前地空瞬变电磁法采用单一线源激发电磁辐射场,仅能从一个侧面与地质体耦合,难以获得地质体的全息影像.采用多辐射源是解决这一问题的途径.本文采用三维矢量有限元法对两个不同地质体多个辐射源情况下的地空瞬变电磁响应开展了模拟研究,分析了多辐射源在不同辐...  相似文献   

19.
多旋翼无人机磁通门航磁系统以其安全、稳定、高效等特点可广泛应用于中大比例尺矿产资源探测领域,但由于磁通门传感器存在三轴不严格正交,灵敏度、零偏不一致造成的转向差,且系统作业中存在固定场干扰、感应干扰和涡流干扰,需要进行流程繁琐的标定和补偿测试.本文根据实测数据分析出航磁系统机电干扰主要来自机载设备高频干扰,针对机电干扰高频特性设计相应低通滤波器进行误差处理,并基于Tolles-Lawson模型建立仪器转向误差和飞行平台机动误差补偿模型,根据两者结构相似的特点,建立综合补偿模型,该模型简单,实用性强,可通过野外一次补偿测试求取补偿参数进而对工区航磁数据进行补偿处理.最后,将综合补偿研究应用到辽宁省兴城市夹山地区航磁数据,综合补偿后的处理有效去除了航磁数据中的条带状干扰异常,并与地面磁测数据异常形态具有良好的一致性,验证了该研究方法有效性和实用性.  相似文献   

20.
Modern regional airborne magnetic datasets, when acquired in populated areas, are inevitably degraded by cultural interference. In the United Kingdom context, the spatial densities of interfering structures and their complex spatial form severely limit our ability to successfully process and interpret the data. Deculturing procedures previously adopted have used semi‐automatic methods that incorporate additional geographical databases that guide manual assessment and refinement of the acquired database. Here we present an improved component of that procedure that guides the detection of localized responses associated with non‐geological perturbations. The procedure derives from a well‐established technique for the detection of kimberlite pipes and is a form of moving‐window correlation using grid‐based data. The procedure lends itself to automatic removal of perturbed data, although manual intervention to accept/reject outputs of the procedure is wise. The technique is evaluated using recently acquired regional United Kingdom survey data, which benefits from having an offshore component and areas of largely non‐magnetic granitic response. The methodology is effective at identifying (and hence removing) the isolated perturbations that form a persistent spatial noise background to the entire dataset. Probably in common with all such methods, the technique fails to isolate and remove amalgamated responses due to complex superimposed effects. The procedure forms an improved component of partial automation in the context of a wider deculturing procedure applied to United Kingdom aeromagnetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号