首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   

2.
The geological storage of carbon dioxide is considered as one of the measures to reduce greenhouse gas emissions and to mitigate global warming. Operators of storage sites are required to demonstrate safe containment and stable behaviour of the storage complex that is achieved by geophysical and geochemical monitoring, combined with reservoir simulations. For site characterization, as well as for imaging the carbon dioxide plume in the reservoir complex and detecting potential leakage, surface and surface‐borehole time‐lapse seismic monitoring surveys are the most widespread and established tools. At the Ketzin pilot site for carbon dioxide storage, permanently installed fibre‐optic cables, initially deployed for distributed temperature sensing, were used as seismic receiver arrays, demonstrating their ability to provide high‐resolution images of the storage formation. A vertical seismic profiling experiment was acquired using 23 source point locations and the daisy‐chained deployment of a fibre‐optic cable in four wells as a receiver array. The data were used to generate a 3D vertical seismic profiling cube, complementing the large‐scale 3D surface seismic measurements by a high resolution image of the reservoir close to the injection well. Stacking long vibro‐sweeps at each source location resulted in vertical seismic profiling shot gathers characterized by a signal‐to‐noise ratio similar to gathers acquired using geophones. A detailed data analysis shows strong dependency of data quality on borehole conditions with significantly better signal‐to‐noise ratio in regions with good coupling conditions.  相似文献   

3.
Blast damage to the tops of coal seams due to incorrect blast standoff distances is a serious issue, costing the industry in Australia about one open‐cut mine for every ten operating mines. The current approach for mapping coal‐seam tops is through drilling and pierce‐point logging. To provide appropriate depth control with accuracy of ±0.2 m for blast hole drilling, it is typically necessary to drill deep reconnaissance boreholes on a 50 m x 50 m grid well in advance of overburden removal. Pierce‐point mapping is expensive and can be inaccurate, particularly when the seam is disturbed by rolls, faults, and other obstacles.Numerical modelling and prototype‐field testing are used in this paper to demonstrate the feasibility of two seismic‐while‐drilling‐based approaches for predicting the approach to the top of coal during blast hole drilling: (i) reverse “walk‐away” vertical seismic profiling recording, in which the drill bit vibration provides the source signal and the geophones are planted on the surface near the drill rig, and (ii) in‐seam seismic recording, in which channel waves, driven by the coupling to the coal of the seismic signal emitted by the approaching drill bit, are guided by the seam to geophones located within the seam in nearby or remote boreholes.  相似文献   

4.
A modular borehole monitoring concept has been implemented to provide a suite of well‐based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre‐optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi‐conductor tubing‐encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre‐optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre‐optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocity‐converted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal‐to‐noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing‐deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones.  相似文献   

5.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   

6.
The analysis of seismic ambient noise acquired during temporary or permanent microseismic monitoring campaigns (e.g., improved/enhanced oil recovery monitoring, surveillance of induced seismicity) is potentially well suited for time‐lapse studies based on seismic interferometry. No additional data acquisition required, ambient noise processing can be automatized to a high degree, and seismic interferometry is very sensitive to small medium changes. Thus there is an opportunity for detection and monitoring of velocity variations in a reservoir at negligible additional cost and effort. Data and results are presented from an ambient noise interferometry study applied to two wells in a producing oil field in Romania. Borehole microseismic monitoring on three component geophones was performed for four weeks, concurrent with a water‐flooding phase for improved oil recovery from a reservoir in ca. 1 km depth. Both low‐frequency (2 Hz–50 Hz) P‐ and S‐waves propagating through the vertical borehole arrays were reconstructed from ambient noise by the virtual source method. The obtained interferograms clearly indicate an origin of the ambient seismic energy from above the arrays, thus suggesting surface activities as sources. It is shown that ambient noise from time periods as short as 30 seconds is sufficient to obtain robust interferograms. Sonic log data confirm that the vertical and horizontal components comprise first arrivals of P‐wave and S‐waves, respectively. The consistency and high quality of the interferograms throughout the entire observation period further indicate that the high‐frequency part (up to 100 Hz) represents the scattered wave field. The temporal variation of apparent velocities based on first‐arrival times partly correlates with the water injection rate and occurrence of microseismic events. It is concluded that borehole ambient noise interferometry in production settings is a potentially useful method for permanent reservoir monitoring due to its high sensitivity and robustness.  相似文献   

7.
At the CO2CRC Otway geosequestration site, the abundance of borehole seismic and logging data provides a unique opportunity to compare techniques of Q (measure of attenuation) estimation and validate their reliability. Specifically, we test conventional time-domain amplitude decay and spectral-domain centroid frequency shift methods versus the 1D waveform inversion constrained by well logs on a set of zero-offset vertical seismic profiles. The amplitude decay and centroid frequency shift methods of Q estimation assume that a seismic pulse propagates in a homogeneous medium and ignore the interference of the propagating wave with short-period multiples. The waveform inversion explicitly models multiple scattering and interference on a stack of thin layers using high-resolution data from sonic and density logs. This allows for stable Q estimation in small depth windows (in this study, 150 m), and separation of the frequency-dependent layer-induced scattering from intrinsic absorption. Besides, the inversion takes into account band-limited nature of seismic data, and thus, it is less dependent on the operating frequency bandwidth than on the other methods. However, all considered methods of Q estimation are unreliable in the intervals where subsurface significantly deviates from 1D geometry. At the Otway site, the attenuation estimates are distorted by sub-vertical faults close to the boreholes. Analysis of repeated vertical seismic profiles reveals that 15 kt injection of the CO2-rich fluid into a thin saline aquifer at 1.5 km depth does not induce detectable absorption of P-waves at generated frequencies 5–150 Hz, most likely because the CO2 plume in the monitoring well is thin, <15 m. At the Otway research site, strong attenuation Q ≈ 30–50 is observed only in shaly formations (Skull Creek Mudstone, Belfast Mudstone). Layer-induced scattering attenuation is negligible except for a few intervals, namely 500–650 m from the surface, and near the injection interval, at around 1400–1550 m, where Qscat ≈ 50–65.  相似文献   

8.
A multichannel borehole‐to‐surface controlled‐source electromagnetic experiment was carried out at the onshore CO2 storage site of Hontomín (Spain). The electromagnetic source consisted of a vertical electric dipole located 1.5 km deep, and the electric field was measured at the surface. The subsurface response has been obtained by calculating the transfer function between the transmitted signal and the electric field at the receiver positions. The dataset has been processed using a fast processing methodology, appropriate to be applied on controlled‐source electromagnetics (CSEM) data with a large signal‐to‐noise ratio. The dataset has been analysed in terms of data quality and repeatability errors, showing data with low experimental errors and good repeatability. We evaluate if the induction of current along the casing of the injection well can reproduce the behaviour of the experimental data.  相似文献   

9.
In 2004 three seismic surface sources (VIBSIST, accelerated weight drop and MiniVib) were tested in a pilot study at the Ketzin test site, Germany, a study site for geological storage of CO2 (EU project CO2SINK). The main objectives of this pilot study were to 1) evaluate the response of the Ketzin site to reflection seismics, especially at the planned injection depth, 2) test different acquisition parameters and 3) use the results to guide the planning of the 3D survey. As part of these objectives, we emphasize the source performance comparison in this study. The sources were tested along two perpendicular lines of 2.4 km length each. Data were acquired by shooting at all stations (source and receiver spacing of 20 m) on both lines, allowing common‐midpoint stacked sections to be produced. The sources' signal characteristics based on signal‐to‐noise ratio, signal penetration and frequency content of raw shot records were analysed and stacked sections were compared. The results show that all three surface sources are suitable for reflection seismic studies down to a depth of about 1 km and provide enough bandwidth for resolving the geological targets at the site, i.e., the Weser and Stuttgart Formations. Near surface conditions, especially a thick weathering layer present in this particular area, strongly influence the data quality, as indicated by the difference in reflectivity and signal‐to‐noise ratio of the two common‐midpoint lines. The stacked sections of the MiniVib source show the highest frequency signals down to about 500 ms traveltime (approximately 500 m depth) but also the shallowest signal penetration depth. The VIBSIST source generates signals with the highest signal‐to‐noise ratio and greatest signal penetration depth of the tested sources. In particular, reflections below 900 ms (approximately 1 km depth) are best imaged by the VIBSIST source. The weight drop performance lies in between these two sources and might be recommended as an appropriate source for a 3D survey at this site because of the shorter production time compared to the VIBSIST and MiniVib sources.  相似文献   

10.
We present the results of a seismic interferometry experiment in a shallow cased borehole. The experiment is an initial study for subsequent borehole seismic surveys in an instrumented well site, where we plan to test other surface/borehole seismic techniques. The purpose of this application is to improve the knowledge of the reflectivity sequence and to verify the potential of the seismic interferometry approach to retrieve high‐frequency signals in the single well geometry, overcoming the loss and attenuation effects introduced by the overburden. We used a walkaway vertical seismic profile (VSP) geometry with a seismic vibrator to generate polarized vertical and horizontal components along a surface seismic line and an array of 3C geophones cemented outside the casing. The recorded traces are processed to obtain virtual sources in the borehole and to simulate single‐well gathers with a variable source‐receiver offset in the vertical array. We compare the results obtained by processing the field data with synthetic signals calculated by numerical simulation and analyse the signal bandwidth and amplitude versus offset to evaluate near‐field effects in the virtual signals. The application provides direct and reflected signals with improved bandwidth after vibrator signal deconvolution. Clear reflections are detected in the virtual seismic sections in agreement with the geology and other surface and borehole seismic data recorded with conventional seismic exploration techniques.  相似文献   

11.
Ghawar, the largest oilfield in the world, produces oil from the Upper Jurassic Arab‐D carbonate reservoir. The high rigidity of the limestone–dolomite reservoir rock matrix and the small contrast between the elastic properties of the pore fluids, i.e. oil and water, are responsible for the weak 4D seismic effect due to oil production. A feasibility study was recently completed to quantify the 4D seismic response of reservoir saturation changes as brine replaced oil. The study consisted of analysing reservoir rock physics, petro‐acoustic data and seismic modelling. A seismic model of flow simulation using fluid substitution concluded that time‐lapse surface seismic or conventional 4D seismic is unlikely to detect the floodfront within the repeatability of surface seismic measurements. Thus, an alternative approach to 4D seismic for reservoir fluid monitoring is proposed. Permanent seismic sensors could be installed in a borehole and on the surface for passive monitoring of microseismic activity from reservoir pore‐pressure perturbations. Reservoir production and injection operations create these pressure or stress perturbations. Reservoir heterogeneities affecting the fluid flow could be mapped by recording the distribution of epicentre locations of these microseisms or small earthquakes. The permanent borehole sensors could also record repeated offset vertical seismic profiling surveys using a surface source at a fixed location to ensure repeatability. The repeated vertical seismic profiling could image the change in reservoir properties with production.  相似文献   

12.
The broadband capabilities of marine, seabed, and land seismic equipment are reviewed with respect to both the source and the receiver sides. In marine acquisition, the main issue at both ends of the spectrum relates to ghosts occurring at the sea surface. Broadband deghosting requires towing at variable depth to introduce notch diversity or using new equipment like multi‐component and/or low‐noise streamers. As a result, a doubling of the bandwidth from about three to six octaves (2.5–200 Hz) has been achieved. Such improvement is not yet observed for seabed surveys in spite of deghosting being a standard process on the receiver side. One issue may be related to the coupling of the particle motion sensor, particularly at high frequencies. For land acquisition, progress came from the vibrators. New shakers and control electronics using broadband sweeps made it possible to add two more octaves to the low‐frequency signal (from 8 to 2 Hz). Whereas conventional 10 Hz geophones are still able to record such low frequencies, 5 Hz high gain geophones or digital accelerometers enhance them to keep the signal above the noise floor. On the high end of the bandwidth, progress is not limited by equipment specifications. Here, the issue is related to a low signal‐to‐noise ratio due to the strong absorption that occurs during signal propagation. To succeed in enlarging the bandwidth, these improved equipment and sweeps must be complemented by a denser spatial sampling of the wavefield by point–source and point–receiver acquisition.  相似文献   

13.
The most common source of seismic energy is an explosion at some depth in a borehole. The radiated waves are reflected not only at the subsurface layers but also at the free surface. The earth's surface acts as a generator of both P- and S-waves. If the source depth is much less than the dominant wavelength the reflected waves resemble closely the waves generated by a single force. Theoretical seismograms were computed with different methods to look for the relevance of the surface-reflected waves. The numerical experiments show reflected shear waves even for small shotpoint—receiver distances. Due to their polarization these waves can be detected most easily on in-line horizontal geophones. The existence of these waves was examined during a conventional survey in Northern Germany. Conventional data analysis shows a large variability in the νps ratio. The method used here produced a shear-wave section with a rather good signal-to-noise ratio down to 4 s S-wave reflection time.  相似文献   

14.
The Lihir open pit mine in Papua New Guinea is located inside an old volcano where geothermal activity is strongly present. Outbursts of hot water and steam into the mining areas were a major safety concern. Passive seismic monitoring was carried out at the mine to investigate whether the geothermal activities could be detected and located using microseismic techniques in a mining environment. In this trial, sixteen triaxial geophones which can withstand temperature up to 200°C were used and installed in four deep boreholes inside the pit. The microseismic events were discriminated using the STA/LTA triggering criterion. During 6 weeks of monitoring, more than 17,000 events were recorded. Approximately 12% of the events showed harmonic vibration characteristics similar to those observed in other geothermal and volcanic areas, suggesting that the geothermal activity inside the pit was captured by the microseismic monitoring system. More than 75% of the events present both P and S waves and they were interpreted to be associated with rock fracturing due to stress release near the bottom of the pit. Many geothermal-type events were located in areas where shear events occurred, implying that the detected geothermal events were not far from the mining area below the pit and they may also be associated with mining. The borehole installation of the geophones significantly reduced the interference of mining noise and achieved good observation of the seismic events. However, equipment installation requires great attention as the geophones may be destroyed due to unexpected rising temperature within the boreholes.  相似文献   

15.
Time‐lapse seismic surveying has become an accepted tool for reservoir monitoring applications, thus placing a high premium on data repeatability. One factor affecting data repeatability is the influence of the rough sea‐surface on the ghost reflection and the resulting seismic wavelets of the sources and receivers. During data analysis, the sea‐surface is normally assumed to be stationary and, indeed, to be flat. The non‐flatness of the sea‐surface introduces amplitude and phase perturbations to the source and receiver responses and these can affect the time‐lapse image. We simulated the influence of rough sea‐surfaces on seismic data acquisition. For a typical seismic line with a 48‐fold stack, a 2‐m significant‐wave‐height sea introduces RMS errors of about 5–10% into the stacked data. This level of error is probably not important for structural imaging but could be significant for time‐lapse surveying when the expected difference anomaly is small. The errors are distributed differently for sources and receivers because of the different ways they are towed. Furthermore, the source wavelet is determined by the sea shape at the moment the shot is fired, whereas the receiver wavelet is time‐varying because the sea moves significantly during the seismic record.  相似文献   

16.
Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N 30) and SWV (V s 30 ) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V s 30 and site class D and E based on N 30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N 30 and V s 30 raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.  相似文献   

17.
陆上高分辨率地震勘探检波器性能及应用效果分析(英文)   总被引:1,自引:1,他引:0  
地震检波器的性能是高分辨率地震数据采集中的一个重要因素,对资料的品质影响很大。为此,作者在不同类型地区对目前在高分辨率地震勘探中常用的动圈式检波器、涡流检波器和数字检波器的性能进行了对比试验。通过野外工作的实际,总结了动圈式检波器、涡流检波器和数字检波器在不同表层地质条件地区的应用效果,提出了适合该类地区高分辨率地震检波器的性能指标,指出合理选择检波器类型和检波器的联接方式,能提高地震资料的信噪比和分辨率。  相似文献   

18.
CO2 has been injected into the saline aquifer Utsira Fm at the Sleipner field since 1996. In order to monitor the movement of the CO2 in the sub‐surface, the seventh seismic monitor survey was acquired in 2010, with dual sensor streamers which enabled optimal towing depths compared to previous surveys. We here report both on the time‐lapse observations and on the improved resolution compared to the conventional streamer surveys. This study shows that the CO2 is still contained in the subsurface, with no indications of leakage. The time‐lapse repeatability of the dual sensor streamer data versus conventional data is sufficient for interpreting the time‐lapse effects of the CO2 at Sleipner, and the higher resolution of the 2010 survey has enabled a refinement of the interpretation of nine CO2 saturated layers with improved thickness estimates of the layers. In particular we have estimated the thickness of the uppermost CO2 layer based on an analysis of amplitude strength together with time‐separation of top and base of this layer and found the maximum thickness to be 11 m. This refined interpretation gives a good base line for future time‐lapse surveys at the Sleipner CO2 injection site.  相似文献   

19.
This paper reports the field setup and preliminary results of experiments utilizing an airgun array in a reservoir in north China for a seismotectonic study. Commonly used in offshore petroleum resource exploration, the airgun source was found to be more useful than a traditional explosive source for large‐scale and long offset land seismic surveys. The airgun array, formed by four 1,500 in3 airguns (a total of 6,000 in3 in volume) was placed at a depth of 6–9 m into the reservoir to generate the pressure impulse. No direct evidence was found that the airgun source adversely affected the fish in the reservoir. The peak ground acceleration recorded on the top of the reservoir dam 100 m away was 17.8 gal in the horizontal direction; this is much less than the designed earthquake‐resistance threshold of 125 gal for this dam. The energy for one shot of this airgun array is about 6.68 MJ, equivalent to firing a 1.7 kg explosive. The seismic waves generated by the airgun source were recorded by receivers of the regional seismic networks and a temporary wide‐angle reflection and refraction profile formed by 100 short‐period seismometers with the maximum source‐receiver offset of 206 km. The seismic wave signature at these long‐offset stations is equivalent to that generated by a traditional blast source in a borehole with a 1,000–2,000 kg explosive. Preliminary results showed clear seismic phases from refractions from the multi‐layer crustal structures in the north China region. Forward modelling using numerical simulation confirms that the seismic arrivals are indeed from lower crustal interfaces. The airgun source is efficient, economical, environmentally friendly and suitable for being used in urbanized areas. It has many advantages over an explosive source for seismotectonic studies such as the high repeatability that is supreme for stacking to improve signal qualities. The disadvantage is that the source is limited to existing lakes or reservoirs, which may restrict experimental geometry.  相似文献   

20.
为了探索在高噪声干扰地区获取高信噪比地震信息的有效途径,本文分析了我国第一个超深井地震观测站江苏东海地壳活动国家野外科学观测研究站设置在地面与井下三个不同深度处的地震仪所记录的波形及其信噪比特征。结果显示:由于观测研究站周围强烈的噪声扰动,地面地震仪记录中无法识别ML0.8地方震波形,而深井地震仪可清晰地记录到该小震波形,且深井地震仪可观测到较地面地震仪更多的零级或负震级地震;井下三组不同深度地震仪所记录波形的信噪比均远高于地面地震仪,且不同深度地震波形信噪比的平均值随仪器深度的增大而增加。井下1 559.5 m处的地震仪的波形平均信噪比为69.20 dB,2 545.5 m处的信噪比达到74.15 dB,均达到高保真波形的信噪比值,这说明1 500 m深处地震仪所观测到的波形可以有效地避免地面干扰,因此深井地震观测能够提供高信噪比的波形资料,为研究震源过程和场地效应等提供真实可靠的基础资料,这也预示着深井观测将促进深井地震学的研究与发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号