首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The theory behind transient electromagnetic surveys can be well described in terms of transverse magnetic and transverse electric modes. Soundings using transverse magnetic and transverse electric modes require different source configurations. In this study, we consider an alternating transverse magnetic field excitation by a circular electric dipole. The circular electric dipole transmitter is a horizontal analogue of the vertical electric dipole. Offshore surveys using circular electric dipole might represent an alternative to the conventional marine controlled‐source electromagnetic method at shallow sea and/or for exploring relatively small targets. Field acquisition is carried out by recording either electric or magnetic responses. Electric responses bear information on the 1D structure of a layered earth and successfully resolve high‐resistivity targets in marine surveys. Land‐based circular electric dipole soundings are affected by induced polarisation. On the contrary, magnetic responses are absent on the surface of a 1D earth, and as a result, they are very sensitive to any and even very small 3D conductivity perturbations. In addition, they are sensitive to induced polarisation or some other polarisation effects in the subsurface. At present, circular electric dipole transmitters and magnetic receivers are successfully used in on‐land mineral and petroleum exploration.  相似文献   

2.
Two types of marine controlled source electromagnetic transmitters   总被引:1,自引:0,他引:1       下载免费PDF全文
Marine controlled source electromagnetic methods are used to derive the electrical properties of a wide range of sub‐seafloor targets, including gas hydrate reservoirs. In most marine controlled source electromagnetic surveys, the deep‐tow transmitter is used with a long horizontal electric dipole being towed above the seafloor, which is capable of transmitting dipole moments in the order of up to several thousand ampere‐metres. The newly developed deployed transmitter uses two horizontal orthogonal electrical dipoles and can land on the seafloor. It can transmit higher frequency electromagnetic signals, can provide accurate transmission orientation, and can obtain higher signal stacking, which compensates for the shorter source dipole length. In this paper, we present the study, key technologies, and implementation details of two new marine controlled source electromagnetic transmitters (the deep‐tow transmitter and the deployed transmitter). We also present the results of a marine controlled source electromagnetic experiment conducted from April to May 2014 in the South China Sea using both the deep‐tow transmitter and the deployed transmitter, which show that the two types of marine transmitters can be used as effective source for gas hydrate exploration.  相似文献   

3.
The time-domain controlled source electromagnetic method is a geophysical prospecting tool applied to image the subsurface resistivity distribution on land and in the marine environment. In its most general set-up, a square-wave current is fed into a grounded horizontal electric dipole, and several electric and magnetic field receivers at defined offsets to the imposed current measure the electromagnetic response of the Earth. In the marine environment, the application often uses only inline electric field receivers that, for a 50% duty-cycle current waveform, include both step-on and step-off signals. Here, forward and inverse 1D modelling is used to demonstrate limited sensitivity towards shallow resistive layers in the step-off electric field when transmitter and receivers are surrounded by conductive seawater. This observation is explained by a masking effect of the direct current signal that flows through the seawater and primarily affects step-off data. During a step-off measurement, this direct current is orders of magnitude larger than the inductive response at early and intermediate times, limiting the step-off sensitivity towards shallow resistive layers in the seafloor. Step-on data measure the resistive layer at times preceding the arrival of the direct current signal leading to higher sensitivity compared to step-off data. Such dichotomous behaviour between step-on and step-off data is less obvious in onshore experiments due to the lack of a strong overlying conductive zone and corresponding masking effect from direct current flow. Supported by synthetic 1D inversion studies, we conclude that time-domain controlled source electromagnetic measurements on land should apply both step-on and step-off data in a combined inversion approach to maximize signal-to-noise ratios and utilize the sensitivity characteristics of each signal. In an isotropic marine environment, step-off electric fields have inferior sensitivity towards shallow resistive layers compared to step-on data, resulting in an increase of non-uniqueness when interpreting step-off data in a single or combined inversion.  相似文献   

4.
Time‐domain marine controlled source electromagnetic methods have been used successfully for the detection of resistive targets such as hydrocarbons, gas hydrate, or marine groundwater aquifers. As the application of time‐domain marine controlled source electromagnetic methods increases, surveys in areas with a strong seabed topography are inevitable. In these cases, an important question is whether bathymetry information should be included in the interpretation of the measured electromagnetic field or not. Since multi‐dimensional inversion is still not common in time‐domain marine controlled source electromagnetic methods, bathymetry effects on the 1D inversion of single‐offset and multi‐offset joint inversions of time‐domain controlled source electromagnetic methods data are investigated. We firstly used an adaptive finite element algorithm to calculate the time‐domain controlled source electromagnetic methods responses of 2D resistivity models with seafloor topography. Then, 1D inversions are applied on the synthetic data derived from marine resistivity models, including the topography in order to study the possible topography effects on the 1D interpretation. To evaluate the effects of topography with various steepness, the slope angle of the seabed topography is varied in the synthetic modelling studies for deep water (air interaction is absent or very weak) and shallow water (air interaction is dominant), respectively. Several different patterns of measuring configurations are considered, such as the systems adopting nodal receivers and the bottom‐towed system. According to the modelling results for deep water when air interaction is absent, the 2D topography can distort the measured electric field. The distortion of the data increases gradually with the enlarging of the topography's slope angle. In our test, depending on the configuration, the seabed topography does not affect the 1D interpretation significantly if the slope angle is less or around 10°. However, if the slope angle increases to 30° or more, it is possible that significant artificial layers occur in inversion results and lead to a wrong interpretation. In a shallow water environment with seabed topography, where the air interaction dominates, it is possible to uncover the true subsurface resistivity structure if the water depth for the 1D inversion is properly chosen. In our synthetic modelling, this scheme can always present a satisfactory data fit in the 1D inversion if only one offset is used in the inversion process. However, the determination of the optimal water depth for a multi‐offset joint inversion is challenging due to the various air interaction for different offsets.  相似文献   

5.
In marine controlled‐source electromagnetic (CSEM) surveys the subsurface is explored by emitting low‐frequency signals from an electric dipole source close to the sea‐bed. The main goal is often to detect and describe possible thin resistive layers beneath the sea‐bed. To gain insight into how CSEM signals propagate, it is informative to study a stratified model. The electromagnetic field is then given in terms of integrals over TE‐ and TM‐polarized plane‐wave constituents. An asymptotic evaluation of the field integrals for large propagation distances results in explicit spatial expressions for the field components and the derived expressions can be used to analyse how the CSEM signals propagate. There are two major signal pathways in a standard CSEM model. One of these pathways is via the thin resistive layer and the resulting response is accounted for by a pole in the reflection response for the TM mode. The signal is propagating nearly vertically down to the resistor from the source, then guided while attenuated along the reservoir, before propagating nearly vertically up to the receiver. The response is slightly altered by the sea‐bed interface and further modified in shallow water due to multiple reflections between the sea‐surface and sea‐bed at both the source and receiver sides. The other major signal pathway is via the resistive air half‐space, the so‐called airwave. The airwave is generated by the TE mode and interacts with the subsurface via vertically propagating signals reflected between the sea‐surface and subsurface at both the source and receiver sides.  相似文献   

6.
This paper discusses the asymptotic behaviour of the electromagnetic fields received on the sea‐bed (target response), as well as the fields distributed inside a thin resistive target, generated by a horizontal electric dipole above the sea‐bed in marine controlled‐source electromagnetics for hydrocarbon exploration. It is found that the guided wave supported by a thin resistive target can be expressed as a single‐mode exponential function. A simple closed‐form expression is derived to relate the single‐mode wavenumber of the guided wave to the model parameters: the resistivity and thickness of the target layer, the sea‐bed resistivity and the frequency. When the air‐wave is removed, the guided wave is dominant among the fields received on the sea‐bed at far offset. Hence the wavenumber of the guided wave can be calculated from the fields measured on the sea‐bed. The closed‐form expression can then be used to invert the target property from the calculated wavenumber and hence, can be considered as a hydrocarbon indicator.  相似文献   

7.
海底电性源频率域CSEM勘探建模及水深影响分析   总被引:4,自引:3,他引:1       下载免费PDF全文
为了探索我国海域油气和水合物等高阻目标体CSEM勘探的可行性和方法技术,本文研究了在海水中水平电性源激励下有限水深海洋地电模型的频率域电磁响应,为进一步的1D和3D仿真计算奠定了理论基础.在推导电磁响应公式时,首先给出了各层介质的Lorentz势,然后根据Coulomb势与Lorentz势的关系,得到了各层介质的Coulomb势.各层介质中的电磁场均可以由Lorentz势或者Coulomb势计算得到,但在有限元计算时Coulomb势具有优势.长导线源的电磁场和势函数可以由电偶源的电磁场和势函数沿导线长度积分得到.文中具体给出了海水中水平电偶源和长导线源在海水层的电磁场公式,并根据该公式计算了不同水深环境下海底表面的电磁场分布,分析了海水深度对海底油气储层电磁异常的影响.结果表明,随着水深减小,异常幅度和形态特征发生明显变化.当水深很浅时(如50 m),只有同线方向的Ex和Ez两个电场分量存在明显异常.最后,以两个已知海底油田为例,计算了不同水深环境下可观测到的电场异常,展示了电性源频率域CSEM在海底勘探中(包括浅海环境)的良好应用前景.对于该方法实用化过程中还需进一步解决的问题,文中结尾部分也进行了初步探讨.  相似文献   

8.
We present a numerical study for 3D time‐lapse electromagnetic monitoring of a fictitious CO2 sequestration using the geometry of a real geological site and a suite of suitable electromagnetic methods with different source/receiver configurations and different sensitivity patterns. All available geological information is processed and directly implemented into the computational domain, which is discretized by unstructured tetrahedral grids. We thus demonstrate the performance capability of our numerical simulation techniques. The scenario considers a CO2 injection in approximately 1100 m depth. The expected changes in conductivity were inferred from preceding laboratory measurements. A resistive anomaly is caused within the conductive brines of the undisturbed reservoir horizon. The resistive nature of the anomaly is enhanced by the CO2 dissolution regime, which prevails in the high‐salinity environment. Due to the physicochemical properties of CO2, the affected portion of the subsurface is laterally widespread but very thin. We combine controlled‐source electromagnetics, borehole transient electromagnetics, and the direct‐current resistivity method to perform a virtual experiment with the aim of scrutinizing a set of source/receiver configurations with respect to coverage, resolution, and detectability of the anomalous CO2 plume prior to the field survey. Our simulation studies are carried out using the 3D codes developed in our working group. They are all based on linear and higher order Lagrange and Nédélec finite‐element formulations on unstructured grids, providing the necessary flexibility with respect to the complex real‐world geometry. We provide different strategies for addressing the accuracy of numerical simulations in the case of arbitrary structures. The presented computations demonstrate the expected great advantage of positioning transmitters or receivers close to the target. For direct‐current geoelectrics, 50% change in electric potential may be detected even at the Earth's surface. Monitoring with inductive methods is also promising. For a well‐positioned surface transmitter, more than 10% difference in the vertical electric field is predicted for a receiver located 200 m above the target. Our borehole transient electromagnetics results demonstrate that traditional transient electromagnetics with a vertical magnetic dipole source is not well suited for monitoring a thin horizontal resistive target. This is due to the mainly horizontal current system, which is induced by a vertical magnetic dipole.  相似文献   

9.
A multichannel borehole‐to‐surface controlled‐source electromagnetic experiment was carried out at the onshore CO2 storage site of Hontomín (Spain). The electromagnetic source consisted of a vertical electric dipole located 1.5 km deep, and the electric field was measured at the surface. The subsurface response has been obtained by calculating the transfer function between the transmitted signal and the electric field at the receiver positions. The dataset has been processed using a fast processing methodology, appropriate to be applied on controlled‐source electromagnetics (CSEM) data with a large signal‐to‐noise ratio. The dataset has been analysed in terms of data quality and repeatability errors, showing data with low experimental errors and good repeatability. We evaluate if the induction of current along the casing of the injection well can reproduce the behaviour of the experimental data.  相似文献   

10.
Navigating marine electromagnetic transmitters using dipole field geometry   总被引:3,自引:0,他引:3  
The marine controlled source electromagnetic (CSEM) technique has been adopted by the hydrocarbon industry to characterize the resistivity of targets identified from seismic data prior to drilling. Over the years, marine controlled source electromagnetic has matured to the point that four‐dimensional or time lapse surveys and monitoring could be applied to hydrocarbon reservoirs in production, or to monitor the sequestration of carbon dioxide. Marine controlled source electromagnetic surveys have also been used to target shallow resistors such as gas hydrates. These novel uses of the technique require very well constrained transmitter and receiver geometry in order to make meaningful and accurate geologic interpretations of the data. Current navigation in marine controlled source electromagnetic surveys utilize a long base line, or a short base line, acoustic navigation system to locate the transmitter and seafloor receivers. If these systems fail, then rudimentary navigation is possible by assuming the transmitter follows in the ship's track. However, these navigational assumptions are insufficient to capture the detailed orientation and position of the transmitter required for both shallow targets and repeat surveys. In circumstances when acoustic navigation systems fail we propose the use of an inversion algorithm that solves for transmitter geometry. This algorithm utilizes the transmitter's electromagnetic dipole radiation pattern as recorded by stationary, close range (<1000 m), receivers in order to model the geometry of the transmitter. We test the code with a synthetic model and validate it with data from a well navigated controlled source electromagnetic survey over the Scarborough gas field in Australia.  相似文献   

11.
In shallow water the frequency domain controlled source electromagnetic method is subject to airwave saturation that strongly limits the sensitivity to resistive hydrocarbon targets at depth. It has been suggested that time‐domain CSEM may offer an improved sensitivity and resolution of these deep targets in the presence of the airwave. In order to examine and test these claims, this work presents a side‐by‐side investigation of both methods with a main focus on practical considerations, and how these effect the resolution of a hydrocarbon reservoir. Synthetic noisy data for both time‐domain and frequency domain methods are simulated using a realistic frequency dependent noise model and frequency dependent scaling for representative source waveforms. The synthetic data studied here include the frequency domain response from a compact broadband waveform, the time‐domain step‐response from a low‐frequency square wave and the time‐domain impulse response obtained from pseudo‐random binary sequences. These data are used in a systematic resolution study of each method as a function of water‐depth, relative noise and stacking length. The results indicate that the broadband frequency domain data have the best resolution for a given stacking time, whereas the time‐domain data require prohibitively longer stacking times to achieve similar resolution.  相似文献   

12.
The analysis of the primary electromagnetic fields caused by steady state or transient electric current flowing along a current loop moving with a constant velocity below the sea surface has several applications. It supports the analysis of submarine physical data and it is useful for protecting ships from the threat of sea mines. The usual approach to the solution for the primary field starts from a hertz vector potential in the frequency domain due to a magnetic dipole. Subsequently it employs Fourier, Laplace, and Hankel transforms to describe the time variation of the primary electromagnetic induced field due to a loop. The result is applicable to both shallow and deep sea water environments. Because of the difference in velocity between source and receiver, a careful application of the convolution integral is necessary in order to adapt the source pulse solution to any type of transmitting current waveform. Furthermore, since the scattered field represents a fraction of the primary field, even minor differences in it caused by the differential velocity renders inadequate interpretation of EMI data.  相似文献   

13.
海底油气藏地质模型的冲激响应   总被引:7,自引:5,他引:2       下载免费PDF全文
海洋可控源电磁法(mCSEM)的时间域冲激响应特征可以反映海底油气高阻薄层.本文计算了水平电偶极子源均匀大地半空间,海洋均匀双半空间和海洋四层模型的阶跃响应和冲激响应,提出了瞬变冲激时刻的概念.分析了水平电偶源瞬变冲激时刻与介质电导率的指示关系.对于海底油气高阻薄层宜采用多偏移距同时测量方式,由于在低电导率介质中电磁能量传播得要快,在适当的收发距瞬变冲激时刻会提前到达,提出的瞬变冲激时刻道间变化量可以明确指示高阻薄层的存在及埋深.文中还分析了海水深度对瞬变冲激时刻的影响.由于“天波”干扰,瞬变冲激响应受到一定收发距观测的限制.消除 “天波”影响是时间域和频率域mCSEM数据处理的研究热点.  相似文献   

14.
To advance and optimize secondary and tertiary oil recovery techniques, it is essential to know the areal propagation and distribution of the injected fluids in the subsurface. We investigate the applicability of controlled‐source electromagnetic methods to monitor fluid movements in a German oilfield (Bockstedt, onshore Northwest Germany) as injected brines (highly saline formation water) have much lower electrical resistivity than the oil within the reservoir. The main focus of this study is on controlled‐source electromagnetic simulations to test the sensitivity of various source–receiver configurations. The background model for the simulations is based on two‐dimensional inversion of magnetotelluric data gathered across the oil field and calibrated with resistivity logs. Three‐dimensional modelling results suggest that controlled‐source electromagnetic methods are sensitive to resistivity changes at reservoir depths, but the effect is difficult to resolve with surface measurements only. Resolution increases significantly if sensors or transmitters can be placed in observation wells closer to the reservoir. In particular, observation of the vertical electric field component in shallow boreholes and/or use of source configurations consisting of combinations of vertical and horizontal dipoles are promising. Preliminary results from a borehole‐to‐surface controlled‐source electromagnetic field survey carried out in spring 2014 are in good agreement with the modelling studies.  相似文献   

15.
The possibility of a time‐domain electromagnetic sounding method using excitation and measurement of vertical electric fields to search for and identify deeply buried reservoirs of hydrocarbons offshore is investigated. The method operates on source–receiver offsets, which are several times less than the depth of the reservoir. Geoelectric information is obtained from the transient responses recorded in the pauses between the pulses of electric current in the absence of the source field. The basics of the method, as well as its sensitivity, resolution, and the highest accessible depth of soundings for various geological conditions in a wide range of sea depths, are analyzed. For the analysis, 1D and 3D geoelectric models of hydrocarbon reservoirs are used. It is shown that under existing technologies of excitation and measurement of vertical electric fields, the highest accessible depth of soundings can be up to 4 km. Technology for the inversion and interpretation of transient responses is demonstrated on experimental data.  相似文献   

16.
This paper presents the first controlled‐source electromagnetic survey carried out in the German North Sea with a recently developed seafloor‐towed electrical dipole–dipole system, i.e., HYDRA II. Controlled‐source electromagnetic data are measured, processed, and inverted in the time domain to estimate an electrical resistivity model of the sub‐seafloor. The controlled‐source electromagnetic survey targeted a shallow, phase‐reversed, seismic reflector, which potentially indicates free gas. To compare the resistivity model to reflection seismic data and draw a combined interpretation, we apply a trans‐dimensional Bayesian inversion that estimates model parameters and uncertainties, and samples probabilistically over the number of layers of the resistivity model. The controlled‐source electromagnetic data errors show time‐varying correlations, and we therefore apply a non‐Toeplitz data covariance matrix in the inversion that is estimated from residual analysis. The geological interpretation drawn from controlled‐source electromagnetic inversion results and borehole and reflection seismic data yield resistivities of ~1 Ωm at the seafloor, which are typical for fine‐grained marine deposits, whereas resistivities below ~20 mbsf increase to 2–4 Ωm and can be related to a transition from fine‐grained (Holocene age) to unsorted, coarse‐grained, and compacted glacial sediments (Pleistocene age). Interface depths from controlled‐source electromagnetic inversion generally match the seismic reflector related to the contrast between the different depositional environments. Resistivities decrease again at greater depths to ~1 Ωm with a minimum resistivity at ~300 mbsf where a seismic reflector (that marks a major flooding surface of late Miocene age) correlates with an increased gamma‐ray count, indicating an increased amount of fine‐grained sediments. We suggest that the grain size may have a major impact on the electrical resistivity of the sediment with lower resistivities for fine‐grained sediments. Concerning the phase‐reversed seismic reflector that was targeted by the survey, controlled‐source electromagnetic inversion results yield no indication for free gas below it as resistivities are generally elevated above the reflector. We suggest that the elevated resistivities are caused by an overall decrease in porosity in the glacial sediments and that the seismic reflector could be caused by an impedance contrast at a thin low‐velocity layer. Controlled‐source electromagnetic interface depths near the reflector are quite uncertain and variable. We conclude that the seismic interface cannot be resolved with the controlled‐source electromagnetic data, but the thickness of the corresponding resistive layer follows the trend of the reflector that is inclined towards the west.  相似文献   

17.
This paper presents the theory to eliminate from the recorded multi‐component source, multi‐component receiver marine electromagnetic measurements the effect of the physical source radiation pattern and the scattering response of the water‐layer. The multi‐component sources are assumed to be orthogonally aligned above the receivers at the seabottom. Other than the position of the sources, no source characteristics are required. The integral equation method, which for short is denoted by Lorentz water‐layer elimination, follows from Lorentz' reciprocity theorem. It requires information only of the electromagnetic parameters at the receiver level to decompose the electromagnetic measurements into upgoing and downgoing constituents. Lorentz water‐layer elimination replaces the water layer with a homogeneous half‐space with properties equal to those of the sea‐bed. The source is redatumed to the receiver depth. When the subsurface is arbitrary anisotropic but horizontally layered, the Lorentz water‐layer elimination scheme greatly simplifies and can be implemented as deterministic multi‐component source, multi‐component receiver multidimensional deconvolution of common source gathers. The Lorentz deconvolved data can be further decomposed into scattering responses that would be recorded from idealized transverse electric and transverse magnetic mode sources and receivers. This combined electromagnetic field decomposition on the source and receiver side gives data equivalent to data from a hypothetical survey with the water‐layer absent, with idealized single component transverse electric and transverse magnetic mode sources and idealized single component transverse electric and transverse magnetic mode receivers. When the subsurface is isotropic or transverse isotropic and horizontally layered, the Lorentz deconvolution decouples into pure transverse electric and transverse magnetic mode data processing problems, where a scalar field formulation of the multidimensional Lorentz deconvolution is sufficient. In this case single‐component source data are sufficient to eliminate the water‐layer effect. We demonstrate the Lorentz deconvolution by using numerically modeled data over a simple isotropic layered model illustrating controlled‐source electromagnetic hydrocarbon exploration. In shallow water there is a decrease in controlled‐source electromagnetic sensitivity to thin resistors at depth. The Lorentz deconvolution scheme is designed to overcome this effect by eliminating the water‐layer scattering, including the field's interaction with air.  相似文献   

18.
我国海底大地电磁探测技术研究的进展   总被引:19,自引:0,他引:19       下载免费PDF全文
魏文博  邓明  谭捍东  金胜 《地震地质》2001,23(2):131-137
几年以前 ,我国尚未独立开展过海洋电磁探测 ,没有获取海洋岩石层电性资料的技术手段。然而 ,地下岩层的电性参数较之其他物性参数能更好地反映岩石的性质以及岩石所处的物理状态 ,因此迫切需要发展海底大地电磁探测技术。海底大地电磁探测是把仪器布置在海底 ,采集海底大地电磁场数据 ,从而研究海底以下不同深度上介质导电性的分布规律 ,达到了解地下不同深度地质情况的目的。经过两年的努力 ,我们已基本实现了海底大地电磁探测技术的研究目标  相似文献   

19.
均匀半空间瞬变电磁场直接时域响应数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
近源时域电磁场具有信号强、探测深度大和精度高等优点,但传统瞬变电磁场理论中偶极子近似在近源区会引起较大误差,推导瞬变电磁场直接时域解析式是解决这一问题的关键.本文在点电荷微元假设下通过时域格林函数,采用分离变量等方法推导出了上半空间一次有源波动场和反射波的时域解析式和下半空间二次无源波动场的时域解析式,结合均匀半空间瞬变电磁场的边界条件给出了均匀半空间瞬变电磁场的直接时域解析式,进而利用第一型曲线积分,通过沿回线源叠加推导出圆回线源在瞬变电磁场中的直接时域解析式.然后在半空间表面上,与传统的电偶极源假设下的表达式作了比较.数值结果表明两者在远源区的计算结果相差甚微,而近源区则存在很大误差.本文利用真正点元(点电荷)严密推导给出的均匀半空间表面上瞬变电磁场的直接时域解析式适用于全场区探测,克服了偶极子假设下只适用远场区的不足,为瞬变电磁法的进一步发展和实际勘探提供了新的理论基础.  相似文献   

20.
罗鸣  李予国 《地球物理学报》2015,58(8):2851-2861
地下介质的电阻率常常表现为各向异性,海底裂隙地层和层状沉积序列可能形成宏观电阻率各向异性.在解释海洋电磁资料时,电阻率各向异性的影响不应该被忽略,否则可能会得到错误的海底地电模型.作者编写了电阻率任意各向异性一维层状介质海洋可控源电磁场计算程序,计算了电阻率各向异性层状模型的海洋可控源电磁响应,讨论了覆盖层和高阻储层分别具有电阻率各向异性时的电磁场响应特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号