首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西北地区近代及历史时期气候变化趋势分析   总被引:16,自引:0,他引:16  
利用小波分析、Mann-Kendall等统计方法和台站资料、历史时期气候代用资料及太阳黑子资料,分析了西北地区气候突变发生的时间及分布、与太阳活动的关系.结果表明:西北地区在气候变暖的背景下,降水增加,主要分布在新疆及河西等地,东部变化不大或略有减少;目前正处在百年尺度上太阳活动的强烈时期,树木年轮表明西北地区干湿变化除与太阳黑子周期有很好的正相关外,还存在64a变化周期.  相似文献   

2.
The spatial (latitude) distribution of sunspots is studied, including its dependence on solar activity. It is shown that the latitude distributions of sunspots for a given year can be approximately described by the normal law, with its variance being a linear function of the current level of solar activity. Thus, an increase in activity is accompanied by an expansion of the zone of solar activity, in good agreement with earlier results. As the solar activity increases, the width of the zone of sunspot generation and the latitude maximum of the sunspot density grow somewhat more slowly than the number of sunspots, in agreement with observations. The results obtained can be used to reconstruct the spatial distributions of sunspots in the past, interpret the magnetic activity of stars, and address the requirements of the dynamo theory in the form of constraints imposed on models of cyclicity.  相似文献   

3.
The literature on influences of solar activity on the Indian weather and climate is reviewed since the discovery of sunspot cycle. Fluctuations in solar activity are undoubtedly a factor affecting weather and climate. Although the results of some of the studies are conflicting, Indian weather and climate is, in general, inversely related to sunspots. However, the areal extent of floods in India seems to expand and contract in phase with the Hale double sunspot cycle, suggesting that the flood rhythm is in some manner controlled by long-term solar activity related to solar magnetic effects. All the evidences of solar influences on weather and climate may have practical implications in improving long-range forecasting of weather and climate, once the physical coupling mechanisms and their modification by other factors are clearly understood. Some of the promising plausible physical mechanisms for explaining solar effects on weather and climate are also discussed.  相似文献   

4.
太阳活动及其对地球环境的影响   总被引:8,自引:2,他引:8       下载免费PDF全文
太阳活动及其对地球环境影响的研究至今已发展成一门涉及太阳物理学、空间物理学和地球物理学的边缘学科,它研究三者的关系及相互作用的过程。本文将太阳活动分成缓变型和爆发型两类,分别介绍了它们的主要成员冕洞、总辐射、太阳黑子、太阳耀斑和日冕物质抛射的性质及特征;分别讨论了这两类太阳活动对地球环境的影响,还指出了太阳活动对固体地球的作用。  相似文献   

5.
青海德令哈地区近400年来的降水量变化与太阳活动   总被引:19,自引:11,他引:8       下载免费PDF全文
黄磊  邵雪梅 《第四纪研究》2005,25(2):184-192
使用多种数学统计方法分析了德令哈地区降水量变化与太阳活动之间的关系,发现近400年来降水量的长期变化与太阳黑子周期长度(SCL)和太阳黑子周期上升支长度之间存在着较好的反相关关系,当SCL偏短、太阳黑子周期上升支长度偏短时,太阳活动偏强,德令哈地区降水量偏多,反之偏少。功率谱和小波分析发现降水量序列中存在着与太阳活动的多种周期相一致的周期,对降水量与太阳活动在不同时间尺度上周期变化之间的关系进行了详细分析。交叉小波分析发现太阳活动主要在百年左右尺度的周期变化上影响德令哈地区降水量的长期变化,太阳活动周期变化的信号越强,对降水量变化的影响越大。文章最后对太阳活动影响德令哈地区降水量变化的可能机制进行了探讨。  相似文献   

6.
Long period variations in the occurrence of prolonged intervals of calm magnetic field conditions are studied using index Ap of magnetic activity. The solar-cycle variation in occurrence is compared with the sunspot number. Anomalous behaviour for solar cycle 20, observed in other solar parameters, are shown to be manifested in the occurrence frequency of quiet intervals. Spectral characteristics of occurrence indicates a dominant long period variation of about 30 years and a more feeble 11-year oscillation  相似文献   

7.
Prediction of sunspot cycle is a vital activity in space mission planning and various engineering decision making. In the present study, the sunspot cycle prediction has been carried out by a hybrid model which employs multivariate regression technique and the binary mixture of Laplace distribution (BMLD) function. The Expectation Maximization (EM) algorithm is being applied to the multivariate regression analysis to obtain a robust prediction of the sunspot cycle. Sunspot cycle 24 has been predicted using this technique. Multivariate regression model has been derived based on the available cycles 1 to 23. This model could predict cycle 24 as an average of previous cycles. Prediction from this model has been refined to capture the cycle characteristics such as bimodal peak at the high solar activity period by incorporating a predicted peak sunspot number from the BMLD model. This revised prediction has shown more accuracy in forecasting the major discrete features of sunspot cycle like maximum amplitude, the Gnevyshev gap, time duration from peak to peak amplitude, and the epoch of peak amplitude. This refined prediction shows that cycle 24 will be having a peak amplitude of 78 with an uncertainty of ±25. Moreover, the present forecast says that, cycle 24 will be having double peak with a strong second peak compared to the first peak. This hypothesis is found to be true with the realized data of cycle 24. Further, this techniques have been validated by predicting sunspot cycles 22 and 23. A preliminary level prediction of sunspot cycle 25 also been carried out using the technique presented here. Present study predicts that, cycle 25 also will be a modest cycle like the present cycle 24, and the peak amplitude may vary in a band of 75–95.  相似文献   

8.
A multifaceted statistical study of all available data on solar activity during the Maunder minimum (1645–1715) is presented. The data include European telescope observations, Asian sunspot observations using the unaided eye, concentrations of cosmogeneous isotopes, and catalogues of polar aurorae. Joint analyses of data on the cosmogeneous isotopes 10Be and 14C are a promising source of information on solar activity in the past. The dates of relative sunspot maxima during the Maunder minimum are consistent with the idea that there were chaotic bursts of solar activity randomly distributed in time during this interval. The available evidence that the 11-year cyclicity was preserved in 1645–1715 are worthy of attention but require additional deep study and verification. No convincing evidence for a 22-year periodicity of the occurrence of sunspots during the Maunder minimum has been found.  相似文献   

9.
The shift between the solar activity cycles in the northern and southern hemispheres of the Sun is studied using data on sunspot number and area. The data obtained are compared with archival information on episodes of appreciable solar-cycle asymmetry. The small phase shift between recent activity cycles in the northern and southern solar hemispheres differs considerably from the shift for episodes of appreciable deviations from dipolar symmetry in the sunspot distribution detected with various degrees of confidence in archival astronomical data from the 17th–19th centuries. The current time shift between the hemispheres is insignificant, about 6–7 months. This shift has changed its sign twice in recent solar history; this probably corresponds to more or less periodic variations with a timescale close to the duration of the Gleissberg cycle.  相似文献   

10.
An approach to reconstructing solar activity in the past is used to study its time evolution. It is already possible to reconstruct not only the general level of solar activity on long timescales, but also particular aspects of its development: sunspot dominance in either hemisphere, the drift and latitude spread of the sunspot-formation zone, and features in the spatial distribution of the activity at specific epochs, such as the Maunder minimum.  相似文献   

11.
SCL与中国东部气候年代际变化   总被引:3,自引:2,他引:1  
据宇地磁耦合原理,利用太阳黑子周期长度(SCL)的变化及其与地磁场(文中主要考虑地热)的关系,模拟计算并重建了中国东部历史时期的气温序列变化,除了个别时段外,模拟曲线与修正后的竺可桢曲线十分相似;分析了2500a来中国东部气候的年代际变化.结果表明,该曲线能较好地再现2500a来中国东部气候的冷暖变化.对竺氏曲线中有争议的几个冷暖时段,如公元150—350年的温暖期、1050—1150年的小气候适宜期等,模拟结果与后来研究者分析的结果相合.中唐至五代的气候冷暖交替变化不稳定.该曲线也能清晰地反映出小冰期中国东部气候各个时段的变化以及现代气候的变化趋势。  相似文献   

12.
Cherry  Neil 《Natural Hazards》2003,29(1):1-11
There is sensible scientific evidence to establish a trailof connection from the sun activity to human biological and health effects. This explains whysunspot numbers and indices of Geomagnetic Activity are correlated with serious human healtheffects in a large body of published studies. The key element is the role of the SchumannResonance signal that is detected by human brains and is used to synchronize diurnal andELF brain rhythms. The Schumann Resonance signal intensity is modulated and highlycorrelated with solar activity and the electron concentrations in the lowest layersof the ionosphere. The enhanced or weakened solar activity moves the level of the SRsignal outside the normal homeostatic range and, through the Melatonin mechanism, causeshealth problems and enhanced death rates in large human populations. A five-yearmonthly data-base is used to confirm the correlation between the climatic factors ofSunspot Number, Southern Oscillation Index and Global mean temperatureanomalies with the SR signal strength. The Sunspot Number emerges as the strongestfactor. A 19 year data-set of annual mortality rates in SE Asia is used to seek evidenceof correlations between human mortality rates and the sunspot number in order to supportand confirm the SR hypothesis. A wide range of mortalities that are associatedwith Melatonin reduction, are found to be significantly correlated with sunspot number,including cancer, cardiac and neurological mortality.  相似文献   

13.
The temporal variations observed in the monthly mean latitudes of sunspot groups are studied over 1874–2010 using the data of the Greenwich Catalog and its NOAA-USEF extension. The 11-year cycle is quite clear in the temporal variations of the monthly mean latitudes of sunspot groups (i.e., of the centers of spotting) in both the northern and southern hemispheres. The North-South (N-S) asymmetry in the latitudes of sunspot groups defined as the difference between the absolute values of sunspot latitudes observed in the N and S hemispheres is compared with the N-S asymmetry in the total area of sunspot groups determined on the scales of 11 years and longer. The N-S asymmetry is interpreted as an imbalance in the hemispheres’ powers (asymmetry in the total area of sunspot groups) and as spatial imbalance (asymmetry in the latitudes of the centers of spotting). This imbalance is most clearly seen at the solar minima, i.e., in the gradual transition from one cycle to the other, when the absolute values of the asymmetries observed both in the total sunspot area and in the sunspot latitudes reach their maxima. The results obtained here can be helpful for analyses of the solar dynamo.  相似文献   

14.
Magnetic Hα synoptic maps of the Sun for 1915–1999 are analyzed and the intensities of spherical harmonics of the large-scale solar magnetic field computed. The possibility of using these Hα maps as a database for investigations of long-term variations of solar activity is demonstrated. As an example, the magnetic-field polarity distribution for the Hα maps and the analogous polarity distribution for the magnetographic maps of the Stanford observatory for 1975–1999 are compared. An activity index A(t) is introduced for the large-scale magnetic field, which is the sum of the magnetic-moment intensities for the dipole and octupole components. The 11-year cycle of the large-scale solar magnetic field leads the 11-year sunspot cycle by, on average, 5.5 years. It is concluded that the observed weak large-scale solar magnetic field is not the product of the decay of strong active-region fields. Based on the new data, the level of the current (23rd) solar-activity cycle and some aspects of solar-cycle theory are discussed.  相似文献   

15.
In recent years, measurements of total electron content (TEC) have gained importance with increasing demand for the GPS-based navigation applications in trans-ionospheric communications. To study the variation in ionospheric TEC, we used the data obtained from GPS Ionospheric Scintillation and TEC monitoring (GISTM) system which is in operation at SVNIT, Surat, India (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region. The data collected (for the low sunspot activity period from August 2008–December 2009) were used to study the diurnal, monthly, seasonal semi-annual and annual variations of TEC at Surat. It was observed that the diurnal variation at the region reaches its maximum value between 13:00 and 16:00 IST. The monthly average diurnal variations showed that the TEC maximizes during the equinox months followed by the winter months, and are lowest during the summer months. The ionospheric range delay to TEC for the primary GPS signal is 0.162 m per TECU. The diurnal variation in TEC shows a minimum to maximum variation of about 5 to 50 TECU (in current low sunspot activity periods). These TEC values correspond to range delay variations of about 1 to 9 m at Surat. These variations in the range delay will certainly increase in high sunspot activity periods. Detected TEC variations are also closely related to space weather characterizing quantities such as solar wind and geomagnetic activity indices.  相似文献   

16.
Observations of the solar butterfly diagram from sunspot records suggest persistent fluctuations in parity, away from the overall, approximately dipolar pattern. A simple mean-field dynamo model is used with a solar-like rotation law and perturbed α effect. The parity of the magnetic field relative to the rotational equator can demonstrate can be described as resonance behavior, while the magnetic energy behaves in a more or less expected way. Possible applications of this effect are discussed in the context of various deviations of the solar magnetic field from dipolar symmetry, as reported from analyses of archival sunspot data. The model produces fluctuations in field parity, and hence in the butterfly diagram, that are consistent with observed fluctuaions in solar behavior.  相似文献   

17.
Short-period (1–60 min) variations in the coordinates of the centers of gravity of isolated sunspots are analyzed. The sunspot coordinated were determined using two sets of observational data—magnetograms and intensities—obtained by SOHO (MDI) on December 6, 1998, from 01:00 to 21:57 UT with temporal resolution 60 s and spatial resolution 0.6″/pixel. A slow drift in the sunspot coordinates was removed using a low-frequency filter with a 61-min integration window. The guiding errors (RMS~0.014″) were determined by analyzing correlated motions in pairs of sunspots, and were removed from the time series before determining the sunspot proper motions. Based on the calculated power spectra for the sunspot proper motions, two period intervals containing appreciable power were identified. One coincides with the well-known 5-min acoustic solar oscillations. The concentration of power in this interval is greater for the coordinate variations derived the magnetograms than those derived from the intensities; the harmonic amplitude for some peaks reaches ~±30 km. The other spectral interval corresponds to periods exceeding 30 min. Overall, the rms short-period variations in the sunspot proper motions are 9.9±2.2 and 16.7±7.6 km (0.014″±0.003″ and 0.024″±0.010″) for the magnetogram and intensity data, respectively.  相似文献   

18.
The parameters of a special type of α-effect known in dynamo theory as the Babcock-Leighton mechanism are estimated using the data of sunspot catalogs. The estimates support the presence of the Babcock-Leighton α-effect on the Sun. Fluctuations of the α-effect are also estimated. The fluctuation amplitude appreciably exceeds themean value, and the characteristic time for the fluctuations is comparable to the period of the solar rotation. Fluctuations with the parameters found are included in a numericalmodel for the solar dynamo. Computations show irregular changes in the amplitudes of the magnetic cycles on time scales of centuries and millennia. The calculated statistical characteristics of the grand solar minima and maxima agree with the data on solar activity over the Holocene.  相似文献   

19.
The Indian summer monsoon exhibits considerable spatio-temporal variability.It is therefore important to understand its dynamics and the inherent periodicities.In this study,we have performed spectral and wavelet analyses of magnetic susceptibility data for sediments from Thimmannanayakanakere(TK)-a small lake in southern India.The main objective of this investigation is to identify and explain the possible origin of the prominent periodicities present in the magnetic susceptibility data.Significant periodicities in the TK χ_(lf)data are centered at 906,232,147,128,96,61,54 and 44 years,which might have a solar origin.The wavelet power spectrum of the raw and detrended χ_(lf)data confirms the findings of spectral analysis and also provides temporal variations of the significant cyclicities during the past3700 cal.years B.P.Positive correlation is documented between sunspot activity and TK xif data;crossspectral analysis of the reconstructed sunspot data and TK xif data suggest that there is a strong coherence between the two datasets as significant periodicities are documented in both.There is a good match between the TK xif and the reconstructed total solar irradiance data for the past 1200 years.However,an out-of-phase relationship is documented at certain time-intervals,which may be attributed to uncertainties in the age-depth model.The results obtained from this study show that solar variations are the main controlling factor of the southwest monsoon and,like other archives from different regions in India,the TK lake sediments have also recorded these solar signatures.  相似文献   

20.
洪业汤 《第四纪研究》2002,22(6):524-532
本文试图介绍发生在非冰期,主要是全新世的突然气候变化研究所取得的进展,包括山地冰川和深海沉积物所记录的全新世突然气候变化,季风和干旱气候突然变化,以及突然气候变化与太阳变化的关系。太阳变化对整个全新世气候变化的影响似乎正愈来愈明晰起来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号