首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
The whole core squeezing method was used to simultaneously obtain profiles of nitrous oxide (N2O), nitrogenous nutrients, and dissolved oxygen in sediments of Koaziro Bay, Japan (coastal water), the East China Sea (marginal sea), and the central Pacific Ocean (open ocean). In the spring of Koaziro Bay, subsurface peaks of interstitial N2O (0.5–3.5 cm depth) were observed, at which concentrations were higher than in the overlying water. This was also true for nitrate (NO3) and nitrite (NO2) profiles, suggesting that the transport of oxic overlying water to the depth through faunal burrows induced in situ N2O production depending on nitrification. In the summer of Koaziro Bay, sediment concentrations of N2O, NO3 and NO2 were lower than in the overlying water. In most East China Sea sediments, both N2O and NO3 decreased sharply in the top 0.5–2 cm oxic layer (oxygen: 15–130 μM), which may have indicated N2O and NO3 consumption by denitrification at anoxic microsites. N2O peaks at subsurface depth (0.5–6.5 cm) implied in situ production of N2O and/or its supply from the overlying water through faunal burrows. However, the occurrence of the latter process was not confirmed by the profiles of other constituents. In the central Pacific Ocean, the accumulation of N2O and NO3 in the sediments likely resulted from nitrification. Nitrous oxide fluxes from the sediments, calculated using its gradient at the sediment–water interface and the molecular diffusion coefficient, were −45 to 6.9 nmolN m−2 h−1 in Koaziro Bay in the spring, −29 to −21 nmolN m−2 h−1 in the summer, −46 to 37 nmolN m−2 h−1 in the East China Sea, 0.17 to 0.23 nmolN m−2 h−1 in the equatorial Pacific, and <±0.2 nmolN m−2 h−1 in the subtropical North Pacific, respectively.  相似文献   

2.
In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits.The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line.Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan, stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation.Between 1860 A.D. and 1899 A.D. (39 years),

m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of

m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.  相似文献   

3.
Methyl halides (monohalomethanes), especially methyl bromide, are known to contribute significantly to ozone destruction in the stratosphere. Budgets of natural and anthropogenic methyl bromide suggest that marine organisms may be the source of a significant proportion of the total global production. Since phytoplankton are abundant in surface waters, they are obvious candidates. Cultures of nine phytoplankton species were grown in CO2-enriched, nitrate-limited medium in sealed glass vessels. Species tested include Chaetoceros calcitrans, Isochrysis sp., Porphyridium sp., Synechococcus sp., Phaeodactylum tricornutum, Tetraselmis sp., Prorocentrum sp., Emiliania huxleyi and Phaeocystis sp. Methyl bromide (CH3Br) and methyl chloride (CH3Cl) concentrations were determined by bubbling the cultures with high-purity air, cryotrapping the effluent and analyzing it on a gas chromatograph with an electron capture detector. The Phaeocystis sp. samples were monitored with GCMS. Cell population, bacterial population, Chl a, pH, and nitrate concentration were monitored for periods of at least two weeks. CH3Cl was produced by all cultures. CH3Br was absent in Tetraselmis sp. and Isochrysis sp. cultures, but present in all the others. Methyl iodide (CH3I) was present in most cultures but could not be quantified due to analytical limitations. CH3I and CH3Br production was fastest in stationary phase and continued long after cell division had ceased. Axeic cultures of Phaeocystis sp. achieved almost identical production rates of CH3Cl and CH3Br as xenic cultures of the same species. Species from tropical waters had faster CH3Cl and CH3Br production rates than temperate species. Scaling the observed production rates using global standing stock estimates for Chl a and particulate nitrogen indicate that phytoplankton can account for only a fraction of the CH3Cl and CH3Br believed to be produced in the ocean. Calculations based on the estimated global biomass of Phaeocystis sp. and E. huxleyi blooms show that their contribution is insignificantly small.  相似文献   

4.
James T. Liu  Li-hua Hou 《Marine Geology》1997,140(3-4):367-390
Around the artificially stabilized tidal inlet that connects Kaohsiung Harbor to Taiwan Straight, 203 surficial samples of the sea floor were taken from the nearshore, in the outer harbor, and portions of the inner harbor. The bathymetry of the same area was also surveyed. The sand fraction in each sample was analyzed for the grain-size composition with a custom-built rapid sediment analyzer. A total of twenty-one size-classes were used in the analysis. Three hypothetical sediment sources were assumed to have influenced the spatial grain-size patterns in the study area: the northward and southward littoral drifts, and the sediments exported from the harbor. After reducing the influence of each hypothetical sediment source separately, the data were analyzed using empirical orthogonal (eigen) function (EOF) analysis. The results indicate that the northward long-term littoral drift is the dominant direction of sediment transport in the nearshore of the study area. A conceptual model for four different sediment trapping and bypassing patterns are proposed. (1) Excess bypass (or net outflux): this bypass pattern is characterized by the export of fine-grained sediments (mud and size classes in the very fine sand fraction) from the interior of the harbor. (2) Partial bypass (or partial trapping): this bypass pattern is represented by the size-classes in fine sand fraction. The amount of these grain sizes entering the outer harbor through the inlet is more than the amount exiting at the inlet mouth, resulting in the retention of a portion of these grain sizes. (3) Total bypass (or zero trapping): grain sizes that exhibit this bypass pattern do not come near the mouth of the inlet. These grain sizes include medium and coarse sand fractions. (4) Lag deposits: this group includes the size classes in the very coarse sand fraction, which are largely concentrated in the scour pit immediately seaward of the inlet mouth. In general, surficial sediment grain-size patterns represent a time-averaged response of the substrate to the transport processes over the time scale of at least two seasons. The differential associations of grain-size groups with various topographic features in the study area suggest morpho-textural relationships exist between the sea floor topography and grain size distribution patterns.  相似文献   

5.
K. Strohle  M. D. Krom 《Marine Geology》1997,140(3-4):231-236
The sediments of the eastern Mediterranean basin contain a series of organic-rich sapropels intercalated with organic-poor nannofossil oozes. Until recently the timing of the onset of sapropel formation was not known accurately because of the low resolution achievable by conventional radiocarbon dating. Compilation of all available 14C-AMS dates show that the base of S-1 (the most recent sapropel) was initiated 8800 years B.P. (14C age corrected by 400 years for reservoir effect) under a 500 m water column and moved progressively into deeper water reaching depths of 3500 m at 8200 years B.P. The linear correlation between the age of S-1 onset and water depth suggests that formation of sapropels moved into deeper water at a rate of 1000 m/200 year. A model is suggested in which export production which sank below the well-mixed surface layers (500 m) was respired consuming dissolved oxygen in the Levantine deep water until a threshold value was reached when sapropels began to be preserved in the sediment. This resulted in a progressively deepening oxygen minimum zone with time until eventually the entire deep water in the basin was oxygen depleted. Assuming that the threshold value for sapropel formation was complete anoxia, it was calculated that primary productivity in the basin during the deposition of S-1 was a factor of 5 greater than that found at present.  相似文献   

6.
R. Quinn  J. M. Bull  J. K. Dix 《Marine Geology》1997,140(3-4):405-413
A 3-dimensional seismic reflection survey (using a Chirp source) of the excavated Mary Rose wreck site (King Henry VIII's flagship, wrecked in 1545) was conducted in the East Solent, off the south coast of England. The high resolution geophysical survey identified two ‘brightspot' anomalies, buried to a depth of 4–5 m, trending east–west adjacent to the western margin of the excavation hole. These anomalous reflectors are interpreted as infilled palaeo-scour features associated with the wrecking and subsequent degradation of the Mary Rose. The features were previously unrecognized on the site, and to the authors' knowledge this is the first time that such preserved longitudinal palaeo-scour marks have been recognized in the sedimentary record. Implications associated with the preservation and identification of the scour features are discussed.  相似文献   

7.
Simrad EM12 backscatter strength data of the Southwest Indian Ridge (SWIR), between 57°E and 70°E, are used to reveal the along-axis segmentation of this super slow-spreading ridge. The backscatter properties of different geologic domains, like bathymetric highs and oblique basins within the rift valley, are characterized using 66 small test sites. We show that backscatter strength is higher on bathymetric swells, corresponding to segment centres, and lower in deep oblique basins corresponding to axial non-transform discontinuities and fracture zones. This contrast between segment centres and discontinuities is produced by both a thicker sediment cover and less frequent volcanic eruptions at segment ends. Using the model of Mitchell (1993), sediments have been estimated to be 2 to 5 m thicker in these areas than at segment centres. The distribution of the seamounts within the rift valley is controlling the long-wavelength variations of the mean backscatter strength calculated along the axis. Lower densities of seamounts and thicker sediments are producing lower and heterogeneous reflectivity levels in the deepest part of the axial valley floor between 61°45′E and 63°45′E. We propose that cooler mantle temperatures inducing construction of fewer volcanoes occur beneath this part of the ridge. The mean backscatter strength along the SWIR axis decreases dramatically toward the Rodrigues Triple Junction suggesting that volcanic production is reduced between 68°20′E and 69°20′E and that the transition from amagmatic tectonic deformation at the triple junction to new seafloor spreading occurs between 69°20′E and 70°E.  相似文献   

8.
High-resolution (3.5 kHz and multi-channel) seismic profiles and piston cores were collected from Maxwell Bay and its tributary embayment, Marian Cove, in the South Shetland Islands, Antarctica, during the Korea Antarctic Research Program (1992/93 and 1995/96) to elucidate the glaciomarine sedimentation processes and recent glacial history of the area. Seismic data from Maxwell Bay reveal a rugged bay margin and flattened basin floor covered with well-stratified hemipelagic muds. On the base-of-slope, acoustically transparent debris flows occur, indicating downslope resedimentation of glaciomarine sediments. Despite the subpolar and ice-proximal settings of Marian Cove, the seafloor is highly rugged with a thin sediment drape, suggesting that much of the area has been recently eroded by glaciers. Sediment cores from the cove penetrated three distinct fining-upward lithofacies: (1) basal till in the lower part of the core, accumulated just seaward of the grounding line of the tidewater glacier; (2) interlaminated sand and mud in the middle part, deposited in ice-proximal zone by a combination of episodic subglacial meltwater inflow and iceberg dumping; and (3) pebbly mud in the upper part, deposited in ice-distal zone by both surface meltwater plume and ice-rafting from the glacier front. A reconstruction of the glacial history of these areas since the late glacial maximum shows an ice sheet filling Maxwell Bay in late Wisconsin time and grounding of the tidewater glacier in Marian Cove until about 1300 yr BP.  相似文献   

9.
Variations in the speciation of iron in the northern North Sea were investigated in an area covering at least two different water masses and an algal bloom, using a combination of techniques. Catalytic cathodic stripping voltammetry was used to measure the concentrations of reactive iron (FeR) and total iron (FeT) in unfiltered samples, while dissolved iron (FeD) was measured by GFAAS after extraction of filtered sea water. FeR was defined by the amount of iron that complexed with 20 μM 1-nitroso-2-napthol (NN) at pH 6.9. FeT was determined after UV-digestion at pH 2.4. Concentrations of natural organic iron complexing ligands and values for conditional stability constants, were determined in unfiltered samples by titration. Mean concentrations of 1.3 nM for FeR, 10.0 nM for FeT and 1.7 nM for FeD were obtained for the area sampled. FeR concentrations increased towards the south of the area investigated, as a result of the increased influence of continental run off. FeR concentrations were found to be enhanced below the nutricline (below 40 m) as a result of the remineralisation of organic material. Enhanced levels of FeT were observed in some surface samples and in samples collected below 30 m at stations in the south of the area studied, thought to be a result of high concentrations of biogenic particulate material and the resuspended sediments respectively. FeD concentrations varied between values similar to those of FeT in samples from the north of the area to values similar to those of FeR in the south. The bloom was thought to have influenced the distribution of both FeR and FeT, but less evidence was observed for any influence on FeR and FeD. The concentration of organic complexing ligands, which could possibly include a contribution from adsorption sites on particulate material, increased slightly in the bloom area and in North Sea waters. Iron was found to be fully (99.9%) complexed by the organic complexing ligands at a pH of 6.9 and largely complexed (82–96%) at pH 8. The ligands were almost saturated with iron suggesting that the ligand concentration could limit the concentration of iron occurring as dissolved species.  相似文献   

10.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   

11.
Abstract

Polychaetes were collected from eight sites across the Chatham Rise (New Zealand) in the region of the Subtropical Front from water depths of c. 2300 m to 350 m. A total of 169 putative species representing 36 families was identified. Spionidae, Paraonidae, Cirratulidae, Syllidae, and Orbiniidae accounted for 50% of all polychaete individuals. Multivariate analysis revealed that three sites at c. 350–453 m water depth on muddy sand (6–7% clay) shared similar faunal and environmental characteristics. Numerical dominants included Lumbrineris sp., P seudeurythoe minuta, Dipolydora cf. socialis, Aglaophamus verrilli, Prionospio lehlersi, Syllinae sp., Monticellina sp., and Cossura sp. Replicates from a single site at c. 750 m depth on the southern flank of the Rise produced a distinct assemblage dominated by Paradoneis, Naineris, Notomastus, Harmothoinae, Prionospio lehlersi, Levinsenia, Aricidea, Kebuita, Paraonella, and ?Leiochrus species. Replicates from greater depths north and south of the Rise presented a greater range of assemblage characteristics and environmental parameters including temperature, dissolved oxygen, median grain size, calcium carbonate (CaCO3), and total organic matter content. Twenty‐eight taxa were found exclusively below 750 m depths including species of Ampharetinae, Chloeia, Pseudeurythoe, Capitellidae, and Cirratulidae. There was a significant difference in faunal composition between northern and southern flanks of the Rise within depth classes and also between sites at the same depth classes. Faunal density and species diversity appeared highest from the crest to 750 m depth on the southern side. Low species diversity at the deepest sites may be confounded by reduced density.  相似文献   

12.
Scavengers perform an important role in deep-sea ecosystems, recycling carrion. However, scavenged material can be difficult to discern from predation. The synaphobranchid eel Diastobranchus capensis Barnard, 1923, is common bycatch in deep-water fisheries for orange roughy (Hoplostethus atlanticus Collett, 1889) in New Zealand waters. Despite anecdotal reports of scavenging in D. capensis, their ecology and feeding are little known. Scavenged material was estimated to be approximately 39 per cent (by weight) of the diet of D. capensis from northeastern Chatham Rise, New Zealand, from water depths of 1062–1196 m. Scavenged material was defined as fragmentary food items from animals and plants either not normally available to the eel, or from animals larger than the eel consuming them (e.g., fish heads and tails, spent squid spermatophores, beaks and tentacle crowns, and seaweed). D. capensis were primarily piscivorous, with the diet supplemented by squid, natant decapods and mysids. The weight or number of food items did not increase with the size of the eel, nor was there any major ontogenetic shift in the composition of the diet. D. capensis probably plays an important role in mid-slope communities, recycling carrion.  相似文献   

13.
准确评估新西兰Hikurangi边缘Tuaheni滑坡复合体(TLC)区域的天然气水合物含量与储层分布对TLC慢滑移现象与产生机制的解释有重要作用。本文分析了IODP372航次U1517站位测井和取心数据,发现在局部地层纵波速度增加(>1.7 km/s)和电阻率升高(>1.5 Ω·m)的104~160 mbsf层段存在天然气水合物,其中112~114、130~145和150~160 mbsf层段饱和度相对较高。根据岩性划分了不同井段对应的矿物成分含量,用于纵波速度模型计算,并利用简化三相介质(STPE)和改进的Biot-Gassmann模型(BGTL)分别估算了104~160 mbsf层段的天然气水合物饱和度,平均饱和度分别为5.2%和6.0%,最高饱和度分别为22.7%和21.6%。同时,与阿尔奇公式估算的水合物饱和度比较,在104~160 mbsf层段3种方法估算的饱和度值随深度变化相似,天然气水合物平均饱和度相近(约6.0%),在130~145 mbsf层段的水合物平均饱和度最高(约8.5%)。本研究使用两种声速模型和更为精细的参数估算饱和度,其估算结果更为可靠,可为Tuaheni滑坡复合体慢滑移现象研究提供良好的基础数据支撑。  相似文献   

14.
ODP (Ocean Drilling Program) Site 1119 was drilled in drift successions deposited by northward flowing currents on the Canterbury slope, South Island, New Zealand. Pliocene (∼3.9 Ma) to Pleistocene drift accumulation was concomitant with tectonic uplift and sediment supply from the Alpine Fault plate boundary to the west, glacial development and eustatic sealevel change that created cyclicity in sandy input. Sand detrital and biogenic modes of very fine and fine sand fractions from 24 unconsolidated core samples (44 thin sections) were determined. Fine sand fractions contain an average of 52% bioclastic debris, with bioclasts making up 23% of the very fine sand fraction. Foraminifers are the dominant bioclasts, with pelagic more common than benthic varieties. The average proportions of monocrystalline quartz, plagioclase and potassium feldspar are similar in both size fractions (average QmKP of ∼25:12:63). In contrast, the very fine sand fractions have, on average, higher lithic (QFL%L of 16 vs. 3%), mica (Totalgrain%M of 10 vs. 6%), and dense mineral (Totalgrain%D of 8 vs. 5%) content as compared with the fine sand fractions. Younger clinoform drape (Unit I) and older mounded drift (Unit II) seismic facies showed no distinct detrital compositional differences in their sand fractions, though bioclast content ranges higher in the fine sand fraction of Unit II. Albite feldspar, metamorphic rock fragment, and chlorite components in the sand are consistent with a schist provenance. Other components such as biotite, plagioclase, and K-feldspar require a contribution from metasedimentary and volcanic rocks. Thus there is some along-slope mixing during sediment transport by south-to-north flowing currents. Cemented microporous sandstone at the base of the section provides some insight into contourite burial diagenesis. This work provides a better understanding of the compositional variability of sand components of drift successions which are potential hydrocarbon reservoirs elsewhere.  相似文献   

15.
Modelling sedimentation rates within an estuary over the time scale of years to decades is a difficult undertaking. The complex nature of sediment transport and the compounding errors associated with making predictions over longer time-scales introduce a high degree of uncertainty when predicting the fate of catchment-derived sediments. In this paper a methodology is presented that links catchment and estuary models that simulate the runoff of sediment from catchments and its subsequent dispersal within the estuary to provide estimates of annual sedimentation rates within the estuary. The models are calibrated against short-term field data and the methodology is validated against sedimentation rates obtained from sediment cores.The catchment of the Mahurangi Estuary delivers between 3800 and 39,000 tonnes/yr with an average load of just over 15,000 tonnes/yr being delivered to the estuary. Data from sediment cores show that over 80% of this load is deposited within the estuary resulting in sedimentation rates of 25 mm/yr in the upper estuary and less than 5 mm/yr in the lower sections of the estuary. The methodology predicts these rates of sedimentation across a range of sub environments within the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号