首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is very important for converting the seismic data from the time domain to the depth domain. Here we discuss the approaches of inverse modeling of travel times for determination of the P-wave velocity (Vp). The migration section of the single channel seismic data is used to define the model horizons and help to control their geometry. Wide angle hydrophone data of OBS are used to determine P-wave travel times. The picked travel times from various shots are inverted for P-wave interval velocities using RayInvr, which calculated theoretical travel times via ray tracing. Damped least squares optimization is performed to fine tune the fits between observed and calculated travel times. In the end, the Vp curve is achieved and the results are compared with that derived from the conventional hyperbolic curve velocity analysis method, the shape of the two curves are similar, and the velocity increases in the layer where gas hydrates are present.  相似文献   

2.
This paper focuses on the relationship between the propagation time and the integral of the sound velocity profile (SVP) with respect to depth (SVP area for short) for positioning seafloor reference points. We proved a linear relationship between the propagation time and the SVP area and defined its mathematical expression (ST law). We showed in three simulations of possible variations in SVPs (random errors, internal waves, or a combination of both) that this ST law is verified. Using this new law in a simulated experiment, the ranging residuals due to sound velocity change through time are significantly improved. With this method, monitoring the SVP while acquiring travel times to a submerged transponder can significantly reduce the positioning errors of the transponder.  相似文献   

3.
A 2D variant of the inversion method for determining velocities within the Benioff zone of Kamchatka is developed with respect to the time of seismic wave travel from the foci group to Shipunskii station located in the region where the zone outcrops at the ocean bottom. The method is based on the idea of seismic tomography on the relationship between travel time discrepancies along the focus–station path and the value of seismic slowness, which is inverse to the velocity and corresponds to the gradient of the time field or the derivative of a hodograph with respect to the distance dt/dl. From this viewpoint, the field of discrepancies observed is the difference between the experimental and theoretical values of slowness. Its averaging with respect to depth and epicentral distance in 50 × 50 km rectangular windows and subsequent inversion make it possible to obtain a discrete velocity field using the GoldenSoftware Surfer program. Resmoothing with the same software leads to a variant of continuous velocity distribution = in the axial plane of the Benioff zone. The described procedure was used to calculate the velocities in this zone of the southern Kuril Islands and southern and central Kamchatka. The principal result in the latter case is identification of a sharp jump in the velocities of body waves in the upper mantle (up to 1.3 km/s for P-waves and up to 0.8 km/s for S-waves) beneath the Kronotskii Peninsula in the 7 years before the catastrophic Kronotskii earthquake that occurred in 1997 (M = 7.9) with an upthrow focal mechanism. This jump reflects the concentration of stresses in the epicentral zone of the earthquake. This result is important for medium-term forecasting of strong earthquakes.  相似文献   

4.
时间服务系统对利用走时层析成像方法进行地下介质速度结构反演至关重要。海底地震仪(ocean bottom seismometer, OBS)工作期间由于没有GPS时间接入, 其时间误差(包括守时误差和授时误差)主要来源于内部石英晶振的准确程度, 受到外部环境变化以及开关机等因素影响。长期实践发现, 部分国产OBS在记录气枪信号以及天然地震信号时存在较大的时间偏差。本文对2019年福建及台湾海峡地壳结构海陆探测实验所获得的53台次国产OBS记录进行了时间服务系统矫正。其中, 针对OBS授时误差, 利用出海前不中断采集的一致性试验和运输船运输过程中产生的晃动互相关进行时间矫正; 针对守时误差, 采用计算实际采样频率与理论采样频率偏差进行矫正; 通过对比矫正前后OBS记录到的天然地震信号, 进行秒级别的检测。结果表明, 经过以上步骤矫正的OBS数据, 其时间记录的准确性得到了显著提高, 从而降低了震相识别、走时拾取的时间误差, 为标准化国产OBS数据采集作业流程提供了重要参考。  相似文献   

5.
Abstract

The relocation of ocean bottom seismometers (OBSs) is a key step in analyzing the three-dimensional seismic tomographic structure of crust and mantle. In order to get the accurate location of OBSs on the seafloor, we analyze the travel times of direct water waves emitted by air-guns. The Monte Carlo and least square methods have been adopted to calculate the true OBS location. The secondary time correction is necessary if the arrivals of direct water waves show overall time drift during relocation which maybe originates from remnant of linear clock drift correction and average errors of travel time picking, mean water velocity assumption, and experiment geometry. We have improved the original OBS relocation procedure which we used previously for other experiments by deliberateness of a secondary time correction and automatically approaching the really mean water velocity. A series of synthetic tests are carried out firstly to document the feasibility of our procedure and then it is applied on a real experiment. In here, we relocate 28 OBSs in total were relocated in 3D seismic survey near Bashi Channel. Relocation results show that the drifting distances for the 28 OBSs range from 65 to 1136 m between the deployed and relocated locations deduced by relocation results. The Pearson correlation coefficient between OBS drifting direction and sea current direction is 0.79, indicating that the two sets of data are highly linearly related and further manifest the sea current as the most possible driving force for OBS drifting during landing on the seafloor but its detailed influence mechanism is unclear by now. This research is necessary and critical for velocity structure modeling, and the optimal relocation program provides valuable experiences for 3D seismic survey in other area.  相似文献   

6.
Abstract

In the recent seismological literature, several articles appeared which suggested that major earthquakes are likely to occur in the near future, in the various seismic gaps around the rim of the Pacific Basin. Although the direct effects of these earthquakes may be confined to local areas, the tsunamis that will generate are expected to travel Pacific Ocean wide and cause great destruction even at far off places around the Pacific Ocean. Here, the various approaches to delineating the tsunami hazard are discussed and some suggestions are made.  相似文献   

7.
In this paper, the wet-dry grid point method (WDM) with generalized curvilinear computation grids is introduced with the aim of presenting a kind of effective numerical model for real-time forecasting of storm surge flooding. To realize this general WDM method, generalized 2-D shallow sea dynamic equations in curvilinear co-ordinates are derived, and the contravariant components of the velocity vector are employed for easily realizing boundary conditions and making the wet-dry point judgement criterion more reasonable. As the generalized equations are not limited to a specific co-ordinate transformation, a self-adaptive grid generation method, which optimizes simultaneously grid smoothness, orthogonality and variation in cell volumes, is then proposed to meet the needs of WDM with varying spacing grids. The paper also provides a numerically stable difference scheme and this scheme is proved accurate by the verification calculation of observed storm surge.  相似文献   

8.
在将钻井垂直地震剖面(VSP)数据的时深拟合公式应用于深部地层的时深转换时,拟合深度与计算的层速度常常不够准确。本文首先利用多项式和幂函数给出了东海陆架盆地中部某凹陷41口钻井VSP数据的时深拟合公式,并用双程旅行时(TWT)最深达8 s的三维地震速度体数据与多道地震剖面对拟合公式在深部地层的适用性进行分析。在TWT为8 s时,速度体数据表明41口钻井位置的平均深度为18 140 m,平均层速度为6 208 m/s,二次多项式的平均拟合深度较之偏高9.2%,计算的层速度偏高36.2%,幂函数则分别偏低28.9%与35.6%,拟合效果都不理想。对此,本文采用通过识别VSP数据的增速拐点并对增速拐点前的VSP数据进行二次多项式拟合,对增速拐点后的VSP数据进行幂函数拟合的分段拟合模型,将TWT为8 s时的平均拟合深度和层速度的误差降到3.3%与4.7%。地震剖面显示研究区莫霍面深度约为TWT=11 s,分段拟合模型在TWT=11 s的平均拟合深度为27 516 m,层速度为7 334 m/s,更接近前人研究成果,表明该模型能显著提高深部地层时深转换的精度。  相似文献   

9.
李荣峰 《台湾海峡》1999,18(2):147-153
本文根据广义分维方法,分析计算了1972年以来福及其周边地区ML≥5.0级地震,台湾地区Ms≥7.0级地震前后小震活动广义时间分维和广义空间分维的变化特征。结果表明,闽台两地中强震前普遍存在着Dt,Ds的低值异常,福建地区中强震前2a左右完成降维过程,而台湾地区则有强震前1a左右结束异常。  相似文献   

10.
A wide-spread bottom simulating reflector (BSR), interpreted to mark the thermally controlled base of the gas hydrate stability zone, is observed over a close grid of multichannel seismic profiles in the Krishna Godavari Basin of the eastern continental margin of India. The seismic data reveal that gas hydrate occurs in the Krishna Godavari Basin at places where water depths exceed 850 m. The thickness of the gas hydrate stability zone inferred from the BSR ranges up to 250 m. A conductive model was used to determine geothermal gradients and heat flow. Ground truth for the assessment and constraints on the model were provided by downhole measurements obtained during the National Gas Hydrate Program Expedition 01 of India at various sites in the Krishna Godavari Basin. Measured downhole temperature gradients and seafloor-temperatures, sediment thermal conductivities, and seismic velocity are utilized to generate regression functions for these parameters as function of overall water depth. In the first approach the base of gas hydrate stability is predicted from seafloor bathymetry using these regression functions and heat flow and geothermal gradient are calculated. In a second approach the observed BSR depth from the seismic profiles (measured in two-way travel time) is converted into heat flow and geothermal gradient using the same ground-truth data. The geothermal gradient estimated from the BSR varies from 27 to 67°C/km. Corresponding heat flow values range from 24 to 60 mW/m2. The geothermal modeling shows a close match of the predicted base of the gas hydrate stability zone with the observed BSR depths.  相似文献   

11.
A multi-channel seismic reflection image shows the reflection Moho dipping toward the Clipperton Fracture Zone in crust 1.4 my old. This seismic line crosses the fracture zone at its eastern intersection with the East Pacific Rise. The seismic observations are made in travel time, not depth. To establish constraints on crustal structure despite the absence of direct velocity determinations in this region, the possible effects of temperature, tectonism, and anomalous lithospheric structure have been considered. Conductive, advective, and frictional heating of the old crust proximal to the ridge-transform intersection can explain <20% of the observed travel-time increase. Heating has a negligible effect on crustal seismic velocity beyond ~10 km from the ridge tip. The transform tectonized zone extends only 6 km from the ridge tip. Serpentinization is unlikely to have thickened the seafloor-to-reflection Moho section in this case. It is concluded that, contrary to conventional wisdom, the 1.4 my old Cocos Plate crust thickens approaching the eastern Clipperton Ridge-Transform Intersection. Increase in thickness must be at least 0.9 km between 22 and 3 km from the fracture zone.  相似文献   

12.
The Pasisar seismic acquisition system combines a source at the sea surface and a deep-towed single channel streamer. This unconventional device geometry reduces the width of the first Fresnel zone which increases the lateral resolution. However, the device acquisition geometry generates artifacts on seismic profiles and induces large incidence angles of the seismic signal. A specific processing sequence must be applied to the data to obtain a readable seismic section. Penetration of the seismic signal depends on the energy of the signal reaching the seafloor and on its incidence angle. Because of smaller source energy, 800 Joules Sparker data cannot be acquired in water depth larger than 1500 m for example, whereas there is no depth limit for the use of this system with air gun sources. Differential acoustic absorption of seismic frequencies (below 1000 Hz) in the water column is negligible when compared with wave fronts expansion. Thus, the horizontal resolution of any seismic system strongly depends on the frequency spectrum of the seismic source and on the travel distances. Pasisar and conventional seismic profiles being usually simultaneously recorded, we illustrate the interest of using a hybrid seismic device by comparing horizontal resolutions as well as signal-to-noise ratio obtained with both the Pasisar and conventional systems. In addition, by carefully picking time arrivals of a reflection on simultaneously recorded surface and deep-towed seismic records, it is possible to estimate the average interval seismic velocity. We present the simplified example of a horizontal reflector.  相似文献   

13.
The detailed seismic refraction investigation of the oceanic crust south of Shatsky Rise in the Northwestern Pacific revealed a low velocity zone (LVZ) with an average compressional wave velocity of 6.3 km/s within layer 3. This conclusion is based on the shadow zone for refractions on the travel time curves in their first arrivals from the M discontinuity. The LVZ may be composed of oceanic plagiogranites because serpentinization of peridotites would probably lead to an increase in crustal block volume with a concomitent decrease in density and thereby thickening and upwelling at the place of now “overdeepened” ocean would be expected.  相似文献   

14.
海洋声层析观测技术和方法   总被引:2,自引:0,他引:2  
叙述海洋声层析观测系统,以声线传播时间层析为重点概括了海洋声层析的基本原理和其他主要方法,共6个方法。对运用海洋声层析观测来反演海洋状态问题的建立、求解及其误差来源作了分析和讨论。以测量声线传播时间为例介绍了海洋声层析观测系统主要设计技术。  相似文献   

15.
南海北部陆缘洋陆转换带实施的OBS2018-H2测线的地壳速度结构, 将为探讨南海张裂-破裂机制提供重要证据。文章介绍了OBS2018-H2测线前期数据处理流程, 包括多道反射地震数据处理、海底地震仪OBS (Ocean Bottom Seismometer)数据格式转换、炮点和OBS位置校正, 以及OBS震相的初步识别, 并对地壳结构进行了初步分析。结果表明: 炮点和OBS位置校正效果良好; 多道反射地震数据为建立初始速度模型提供了良好约束; OBS综合地震剖面识别了多组清晰的P波震相, 包括Pw、Pg、PmP和Pn震相。根据测线西侧OBS36、OBS37两台站的震相分布特征初步估算台站下方地壳厚度约为6~7km, 与根据多道地震剖面LW3的双程走时估算的厚度6~9km大致相符。  相似文献   

16.
城市空气质量数值预报的不确定性与可预报性   总被引:1,自引:0,他引:1  
主要综述了数据误差、随机误差和模式物理误差所造成的城市空气质量数值预报的不确定性,简要介绍分析预报不确定性的统计方法。并对由内在随机性和外在误差引起的可预报性问题进行了分析讨论  相似文献   

17.
This paper applies nonlinear Bayesian inversion to seabed reflection data to estimate viscoelastic parameters of the upper sediments. The inversion provides maximum a posteriori probability (MAP) parameter estimates with uncertainties quantified in terms of marginal probability distributions, variances, and credibility intervals; interparameter relationships are quantified by correlations and joint marginal distributions. The inversion is applied to high-resolution reflectivity data from two sites in the Strait of Sicily. One site is characterized by low-speed sediments, resulting in data with a well-defined angle of intromission; the second is characterized by high-speed sediments, resulting in a critical angle. Data uncertainties are quantified using several approaches, including maximum-likelihood (ML) estimation, treating uncertainties as nuisance parameters in the inversion, and analysis of experimental errors. Statistical tests are applied to the data residuals to validate the assumed uncertainty distributions. Excellent results (i.e., small uncertainties) are obtained for sediment compressional-wave speed, compressional attenuation, and density; shear parameters are less well determined although low shear-wave speeds are indicated. The Bayesian analysis provides a quantitative comparison of inversion results for the two sites in terms of the resolution of specific geoacoustic parameters, and indicates that the geoacoustic information content is significantly higher for intromission data  相似文献   

18.
Between June 2004 and September 2004 a temporary seismic network was installed on the northern insular shelf of Iceland and onshore in north Iceland. The seismic setup aimed at resolving the subsurface structure and, thus, the geodynamical transition from Icelandic crust to typical oceanic crust along Kolbeinsey Ridge. The experiment recorded about 1,000 earthquakes. The region encloses the Tjörnes Fracture Zone containing the Husavik–Flatey strike-slip fault and the extensional seismic Grimsey Lineament. Most of the seismicity occurs in swarms offshore. Preliminary results reveal typical mid-ocean crust north of Grimsey and a heterogeneous structure with major velocity anomalies along the seismic lineaments and north–south trending subsurface features. Complementary bathymetric mapping highlight numerous extrusion features along the Grimsey Lineament and Kolbeinsey Ridge. The seismic dataset promises to deliver new insights into the tectonic framework for earthquakes in an extensional transform zone along the global mid-ocean ridge system.  相似文献   

19.
Large-eddy simulation of turbulent flow past a circular cylinder at sub- to super-critical Reynolds numbers is performed using a high-fidelity orthogonal curvilinear grid solver. Verification studies investigate the effects of grid resolution, aspect ratio and convection scheme. Monotonic convergence is achieved in grid convergence studies. Validation studies use all available experimental benchmark data. Although the grids are relatively large and fine enough for sufficiently resolved turbulence near the cylinder, the grid uncertainties are large indicating the need for even finer grids. Large aspect ratio is required for sub-critical Reynolds number cases, whereas small aspect ratio is sufficient for critical and super-critical Reynolds number cases. All the experimental trends were predicted with reasonable accuracy, in consideration the large facility bias, age of most of the data, and differences between experimental and computational setup in particular free stream turbulence and roughness. The largest errors were for under prediction of turbulence separation.  相似文献   

20.
Existence of gas-hydrate in the marine sediments elevates both the P- and S-wave seismic velocities, whereas even a small amount of underlying free-gas decreases the P-wave velocity considerably and the S-wave velocity remains almost unaffected. Study of both P- and S-wave seismic velocities or their ratio (VP/VS) for the hydrate-bearing sediment provides more information than that obtained by the P- or S-wave velocity alone for the quantitative assessment of gas-hydrate. We estimate the P- and S-wave seismic velocities across a BSR (interface between gas-hydrate and free-gas bearing sediments) using the travel time inversion followed by a constrained AVA modeling of multi channel seismic (MCS) data at two locations in the Makran accretionary prism. Using this VP/VS ratio, we then quantify the amount of gas-hydrate and free-gas based on two rock-physics models. The result shows an estimate of 12–14.5% gas-hydrate and 4.5–5.5% free-gas of the pore volume based on first model, and 13–20% gas-hydrate and 3–3.5% free-gas of the pore volume based on the second model, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号