首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Icarus》1986,66(3):536-555
We study numerically the interaction of two small satellites, initially on circular orbits with slightly different radii. We show first that by going to Hill's limit of vanishing masses, one can reduce the problem to a simpler form in which only one dimensionless parameter remains: the reduced impact parameter. We present then a detailed study of the family obtained when this parameter is varied. Each orbit consists of three phases: approach of the two small bodies, interplay, and departure. Fourth-order series are used to represent the asymptotic motion of the two small bodies in the approach and departure phases; these series are matched with a numerical integration of the interplay phase to give an accurate representation of the entire orbit. For each orbit, we compute the net effect of the encounter, essentially characterized by an increase of the separation of the satellite orbits. We compute also the minimal distance of approach of the two satellites. In the limiting cases of large and small impact parameters, the results are compared with the predictions of perturbation theories. Finally we study the “transitions,” which are apparent discontinuities of the family with a sudden change of the direction of departure. We show that they can be explained by the asymptotic approach of the orbit to an unstable periodic solution of Hill's problem. Transitions take place for infinitely many values of the parameter, forming a Cantor-like set.  相似文献   

2.
In this paper, we investigate a generalization of the Hill's problem to the case where no restriction is made about the nature of the field of force perturbing two small bodies in gravitational interaction. We apply the general equations obtained to the dynamics of two bodies located in the vicinity of the triangular lagrangian points of the restricted three-body problem.  相似文献   

3.
The circular restricted problem of three bodies is investigated analytically with respect to the problem of deriving a second integral of motion besides the well known Jacobian Integral. The second integral is searched for as a correction the angular momentum integral valid in the two body case. A partial differential equation equivalent to the problem is derived and solved approximately by an asymptotic Fourier method assuming either sufficiently small values for the dimensionless mass parameter or sufficiently large distances from the barycentre. The solution of the partial equation then leads to a function of the coordinates, velocities and time being nearly constant, which means that its variation with time is about 40–300 times less than that of the pure angular momentum. By averaging over the remaining fluctuating part of the quasi-integral we are able to integrate the first order equations using a renormalization transformation. This leads to an explicit expression for the approximate solution of the circular problem which describes the motion of the third body orbiting both primaries with nonvanishing initial eccentricity (eccentric planetary type orbits). One of the main results is an explicit formula for the frequency of the perihelion motion of the third body which depends on the mass parameter, the initial distance of the third body from the barycentre and the initial eccentricity. Finally we study orbits of the P-Type, being defined as solutions of the restricted problem with circular initial conditions (vanishing initial eccentricity).  相似文献   

4.
Within the context of the restricted problem of three bodies, we wish to show the effects, caused by varying the mass ratio of the primaries and the eccentricity of their orbits, upon periodic orbits of the infinitesimal mass that are numerical continuations of circular orbits in the ordinary problem of two bodies. A recursive-power-series technique is used to integrate numerically the equations of motion as well as the first variational equations to generate a two-parameter family of periodic orbits and to identify the linear stability characteristics thereof. Seven such families (comprised of a total of more than 2000 orbits) with equally spaced mass ratios from 0.0 to 1.0 and eccentricities of the orbits of the primaries in a range 0.0 to 0.6 are investigated. Stable orbits are associated with large distances of the infinitesimal mass from the perturbing primary, with nearly circular motion of the primaries, and, to a slightly lesser extent, with small mass ratios of the primaries.Conversely, unstable orbits for the infinitesimal mass are associated with small distances from the perturbing primary, with highly elliptic orbits of the primaries, and with large mass ratios.  相似文献   

5.
In extending the results of Henon and Petit (1986) an algorithm is suggested for constructing the series representing the general encounter-type solution of the spatial eccentric Hill's problem. The series are arranged in powers of the eccentricity E of Hill's problem and two integration constants e and k characterizing eccentricity and inclination of the relative motion. A particular non-periodic solution of Henon and Petit corresponding to E = e = k = 0 is taken as an intermediary. The perturbations to this solution are constructed similar to the lunar theory of Hill and Brown.  相似文献   

6.
A simple rearrangement of the torque free motion Hamiltonian shapes it as a perturbation problem for bodies rotating close to the principal axis of maximum inertia, independently of their triaxiality. The complete reduction of the main part of this Hamiltonian via the Hamilton–Jacobi equation provides the action-angle variables that ease the construction of a perturbation solution by Lie transforms. The lowest orders of the transformation equations of the perturbation solution are checked to agree with Kinoshita’s corresponding expansions for the exact solution of the free rigid body problem. For approximately axisymmetric bodies rotating close to the principal axis of maximum inertia, the common case of major solar system bodies, the new approach is advantageous over classical expansions based on a small triaxiality parameter.  相似文献   

7.
This paper gives analytical formulas to express the changes in orbital elements due to a close encounter between two particles of a ring or between two small satellites of a planet. The study is performed in the frame of the Hill's problem, extended to fully take into account the eccentricities. The Lie's transform method is used to average the Hamiltonian, particularized to two types of encounters: the ones with small impact distance (coorbitals) and those with a large one (shepherds).  相似文献   

8.
We consider two spheroidal rigid bodies of comparable size constituting the components of an isolated binary system. We assume that (1) the bodies are homogeneous oblate ellipsoids of revolution, and (2) the meridional eccentricities of both components are small parameters.We obtain seven nonlinear differential equations governing simultaneously the relative motion of the two centroids and the rotational motion of each set of body axes. We seek solutions to these equations in the form of infinite series in the two meridional eccentricities.In the zero-order approximation (i. e., when the meridional eccentricities are neglected), the equations of motion separate into two independent subsystems. In this instance, the relative motion of the centroids is taken as a Kepler elliptic orbit of small eccentricity, whereas for each set of body axes we choose a composite motion consisting of a regular precession about an inertial axis and a uniform rotation about a body axis.The first part of the paper deals with the representation of the total potential energy of the binary system as an infinite series of the meridional eccentricities. For this purpose, we had to (1) derive a formula for representing the directional derivative of a solid harmonic as a combination of lower order harmonics, and (2) obtain the general term of a biaxial harmonic as a polynomial in the angular variables.In the second part, we expound a recurrent procedure whereby the approximations of various orders can be determined in terms of lower-order approximations. The rotational motion gives rise to linear differential equations with constant coefficients. In dealing with the translational motion, differential equations of the Hill type are encountered and are solved by means of power series in the orbital eccentricity. We give explicit solutions for the first-order approximation alone and identify critical values of the parameters which cause the motion to become unstable.The generality of the approach is tantamount to studying the evolution and asymptotic stability of the motion.Research performed under NASA Contract NAS5-11123.  相似文献   

9.
The 1:1 mean motion resonance may be referred to as the lowest order mean motion resonance in restricted or planetary three-body problems. The five well-known libration points of the circular restricted three-body problem are five equilibriums of the 1:1 resonance. Coorbital motion may take different shapes of trajectory. In case of small orbital eccentricities and inclinations, tadpole-shape and horseshoe-shape orbits are well-known. Other 1:1 libration modes different from the elementary ones can exist at moderate or large eccentricities and inclinations. Coorbital objects are not rare in our solar system, for example the Trojans asteroids and the coorbital satellite systems of Saturn. Recently, dozens of coorbital bodies have been identified among the near-Earth asteroids. These coorbital asteroids are believed to transit recurrently between different 1:1 libration modes mainly due to orbital precessions, planetary perturbations, and other possible effects. The Hamiltonian system and the Hill’s three-body problem are two effective approaches to study coorbital motions. To apply the perturbation theory to the Hamiltonian system, standard procedures involve the development of the disturbing function, averaging and normalization, theory of ideal resonance model, secular perturbation theory, etc. Global dynamics of coorbital motion can be revealed by the Hamiltonian approach with a suitable expansion. The Hill’s problem is particularly suitable for the studies on the relative motion of two coorbital bodies during their close encounter. The Hill’s equation derived from the circular restricted three-body problem is well known. However, the general Hill’s problem whose equation of motion takes exactly the same form applies to the non-restricted case where the mass of each body is non-negligible, namely the planetary case. The Hill’s problem can be transformed into a “canonical shape” so that the averaging principle can be applied to construct a secular perturbation theory. Besides the two analytical theories, numerical methods may be consulted, for example the approach of periodic orbit, the surface of section, and the computation of invariant manifolds carried by equilibriums or periodic orbits.  相似文献   

10.
The present work is concerned with the two-body problem with varying mass in case of isotropic mass loss from both components of the binary systems. The law of mass variation used gives rise to a perturbed Keplerian problem depending on two small parameters. The problem is treated analytically in the Hamiltonian frame-work and the equations of motion are integrated using the Lie series developed and applied, separately by Delva (1984) and Hanslmeier (1984). A second order theory of the two bodies eject mass is constructed, returning the terms of the rate of change of mass up to second order in the small parameters of the problem.  相似文献   

11.
The motion of two rotating spheroidal bodies, constituting the components of a binary system in a weak gravitational field, has been considered up to terms of the second order in the small parameterV/c, whereV denotes the velocity of the bodies andc is the velocity of light.The following simplifying assumptions, consistent with a problem of astronomical interest, have been made: (1) the dimensions of the bodies are small compared with their mutual distance; (2) the bodies consist of matter in the fluid state with internal hydrostatic pressure and their oblateness is due to their own rotation; (3) there exist axial symmetry about the axis of rotation and symmetry with respect to the equatorial plane, the same symmetry properties apply to mass densities and stress tensors.The Fock-Papapetrou method was used to ascertain those terms in the equations of motion which are due to the rotation and to the oblateness of each component. Approximate solutions to the Poisson and wave equations were obtained to express the potential and retarded potential at large distances from the bodies generating them. The explicit evaluation of certain integrals has necessitated the use of the Laplace-Clairaut theory for the equibrium configuration of rotating bodies. The final expressions require the knowledge of the mass density as a function of the mean radius of the equipotential surfaces.As an interpretation of the results, the Lagrangian perturbation equations were employed to evaluate the secular motion of the nodal line for the relative orbit of the two components. The results constitute a generalization of Fock's work and furnish the contribution of the mass distribution to the rotation effect of general relativity.  相似文献   

12.
The gravitational problem of three bodies is treated in the case when the masses of the participating bodies are of the same order of magnitude and their distances are arbitrary. Estimates for the minimum perimeter of the triangle formed by the bodies and for the rate of the expansion of the system are obtained from Sundman's modified general inequality when the total energy of the system is negative. These estimates are used to propose and to describe an escape mechanism based on genuine three-body dynamics and to offer a method to control the accuracy of numerical integrations of the problem of three bodies. The requirements for these two applications are contradictory since an escape is the consequence of a close triple approach which phenomenon is detrimental to the accuracy of the computations. Consequently, the numerical study of escape from a triple system must treat triple close approaches with high reliability.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 27–September 2, 1972.  相似文献   

13.
The restricted problem of three bodies is generalized to the restricted problem of 2+n bodies. Instead of one body of small mass and two primaries, the system is modified so that there are several gravitationally interacting bodies with small masses. Their motions are influenced by the primaries but they do not influence the motions of the primaries. Several variations of the classical problem are discussed. The separate Jacobian integrals of the minor bodies are lost but a conservative (time-independent) Hamiltonian of the system is obtained. For the case of two minor bodies, the five Lagrangian points of the classical problem are generalized and fourteen equilibrium solutions are established. The four linearly stable equilibrium solutions which are the generalizations of the triangular Lagrangian points are once again stable but only for considerably smaller values of the mass parameter of the primaries than in the classical problem.  相似文献   

14.
Various families of periodic solutions are shown to exist in the three body problem, in which two of the bodies are close to a commensurability in mean motions about the third body, the primary, which is considerably more massive than the other two. The cases considered are
  1. The non-planar circular restricted problem (in which one of the secondary bodies has zero mass, and the other moves in a fixed circular orbit about the primary).
  2. The planar non-restricted problem (in which the three bodies move in a plane, and both secondaries have finite mass).
  3. The planar elliptical restricted problem (in which the three bodies move in a plane, one of the secondary bodies has zero mass, and the other moves in a fixed elliptical orbit about the primary).
The method used is to eliminate all short period terms from the Hamiltonian of the motion by means of a von Zeipel transformation, leaving only the long period terms which are due to the commensurability. Hence only the long period part of the motion is considered, and the variables used differ from the variables describing the full motion by a series of short-period trigonometric terms of the order of the ratio of the mass of the secondaries to that of the primary body. It is shown that solutions of the long-period problem in which the variables remain constant are equivalent to solutions in the full motion in which the bodies periodically return to the same configuration, and these are the types of periodic solution that are shown to exist. The form of the disturbing function, and hence of the equations of motion, is found up to the fourth powers of the eccentricities and inclination by considering the d'Alembert property. The coefficients of the terms appearing in this expansion are functions of the semi-major axes of the orbits of the secondary bodies. Expressions for these coefficients are not worked out as they are not required. Lete, n, m be the orbital eccentricity, mean motion and mass of one of the secondary bodies, and lete′, n′, m′ be the corresponding quantities for the other. (The mass of the primary is taken as unity). In cases (a) and (c) we will havem=0. In case (a)e′ will be zero, and in case (c) it will be a constant. Leti be the mutual inclination of the orbits of the secondary bodies. Suppose the commensurability is of the form(p+q) n =pn′, wherep andq are relatively prime integers, and put γ=(p+q) n/n′?p. The families of periodic solutions shown to exist are as follows. For q=1 No periodic solutions are found withi≠0 in case (a), and none withe′≠0, in case (c). In case (b) periodic solutions are found in whiche=0 (m′/γ),e′=0 (m/γ) for values of γ away from the exact commensurability. As γ approaches zero thene ande′ become 0 (1). For q≠1 Case (a). Families of periodic solutions bifurcating from the family withe=0, i=0 are shown to exist. Families in whichi=0 ande becomes non-zero exist for all values ofq. Families in whiche=0 andi becomes non-zero exist for even values ofq. Families in whiche andi become non-zero simultaneously exist for odd values ofq. Case (b). No families are found other than those withe=e′=0. Case (c). Families are found bifurcating from the familye=e′=0 in whiche ande′ become non-zero simultaneously. For all these solutions existence is only demonstrated close to the point of bifurcation, where all the variables are small, as the method uses series expansions ine, e′ andi. From the form of the solutions it is clear that the non-zero variables will become large for values of γ away from the bifurcation point.  相似文献   

15.
Out-of-plane motion about libration points is studied within the framework of the elliptic restricted three-body problem. Nonlinear motion in the circular restricted problem is given to third order in the out-of-plane amplitudeA z by Jacobi elliptic functions. Linear motion in the elliptic problem is studied using Mathieu's and Hill's equations. Additional terms needed for a complete third-order theory are found using Lindsted's method. This theory is constructed for the case of collinear libration points; for the case of triangular points, a third-order nonlinear solution is given separately in terms of Jacobi elliptic functions.  相似文献   

16.
We study analytically the orbits along the asymptotic manifolds from a complex unstable periodic orbit in a symplectic 4-D Froeschlé map. The orbits are given as convergent series. We compare the analytic results by truncating the series at various orders with the corresponding numerical results and we find agreement along a more extended length, as the order of truncation increases. The agreement is improved when the parameters approach those of the stability domain. Along the manifolds no terms with small divisors appear in the series. The same result is found if we use a parametrization method along the asymptotic curves. In the case of orbits starting close to the manifolds small divisors appear, but the orbits remain close to the manifolds for an extended period of time. If the parameters of the map are close to the stable domain the orbits recede and approach the origin several times and remain confined in a certain volume around the origin for a long time before escaping to large distances. For special sets of parameters we see resonance phenomena and the orbits take particular forms near every resonance.  相似文献   

17.
The existence of ten first integrals for the classical problem of the motion of a system of material points, mutually attracting according to Newtonian law, is well known.The existence of the analogous ten first integrals for the more complicated problem of the motion of a system of absolutely rigid bodies, whose elementary particles mutually attract according to the Newtonian law, was established by the author (Duboshin, 1958, 1963, 1968).In his later papers (Duboshin, 1969, 1970), the problem of the motion of a system of material points, attracting each other according to a more general law, was considered and, in particular, it was shown under what conditions the ten first integrals, analogous to the classical integrals, may exist for this problem.In the present paper, the generalized problem of translatory-rotatory motion of rigid bodies, whose elementary particles acting upon each other according to arbitrary laws of forces along the straight line joining them, is discussed.The author has shown that the first integrals for this general problem, analogous to the integrals of the problem of the translatory-rotatory motion of rigid bodies, whose elementary particles acting according to the Newtonian law, exist under certain well known conditions.That is, it has been established that if the third axiom of dynamics (action = reaction) is satisfied, then the integrals of the motion of centre of inertia and the integrals of the moment of momentum exist for this generalized problem.If the third axiom is not satisfied, then the above mentioned integrals do not exist.The third axiom is a necessary but not a sufficient condition for the existence of the tenth integral-the energy integral. The tenth integral always exists if the elementary particles of the bodies acting with a force, depend only on the mutual distances between them. In this case the force function exists for the problem and the energy integral can be expressed in a well known form.The tenth integral may exist for some more general case, without expressing the principle of conservation of energy, but permitting calculation of the kinetic energy, if the configuration of a system is given.The problem, in which the elementary particles acting according to the generalized Veber's law (Tisserand, 1896) has been cited as an example of this more general case.  相似文献   

18.
On the planar motion in the full two-body problem with inertial symmetry   总被引:1,自引:0,他引:1  
Relative motion of binary asteroids, modeled as the full two-body planar problem, is studied, taking into account the shape and mass distribution of the bodies. Using the Lagrangian approach, the equations governing the motion are derived. The resulting system of four equations is nonlinear and coupled. These equations are solved numerically. In the particular case where the bodies have inertial symmetry, these equations can be reduced to a single equation, with small nonlinearity. The method of multiple scales is used to obtain a first-order solution for the reduced nonlinear equation. The solution is shown to be sufficient when compared with the numerical solution. Numerical results are provided for different example cases, including truncated-cone-shaped and peanut-shaped bodies.  相似文献   

19.
In a recent paper [3], Lacomba and Llibre showed numerically the existence of two transversal ejection-collision orbits in Hill's problem for a valueC=5 of the Jacobian constant. This result can be used to prove the non-existence ofC 1-extendable regular integrals for Hill's problem. Here we give an analytic proof of the existence of four ejection-collision orbits which are transversal for large enough values ofC.  相似文献   

20.
Based on the theory of intermediate orbits developed earlier by the author of this paper, a new approach is proposed to the solution of the problem of finding the orbit of a celestial body with the use of two position vectors of this body and the corresponding time interval. This approach makes it possible to take into account the main part of perturbations. The orbit is constructed, the motion along which is a combination of two motions: the uniform motion along a straight line of a fictitious attracting center, whose mass varies according to the first Meshchersky law, and the motion around this center. The latter is described by the equations of the Gylden–Meshchersky problem. The parameters of the constructed orbit are chosen so that their limiting values at any reference epoch determine a superosculating intermediate orbit with third-order tangency. The accuracy of approximation of the perturbed motion by the orbits calculated by the classical Gauss method and the new method is illustrated by an example of the motion of the unusual minor planet 1566 Icarus. Comparison of the results obtained shows that the new method has obvious advantages over the Gauss method. These advantages are especially prominent in cases where the angular distances between the reference positions are small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号