首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Northern Victoria Land is a key area for the Ross Orogen – a Palaeozoic foldbelt formed at the palaeo‐Pacific margin of Gondwana. A narrow and discontinuous high‐ to ultrahigh‐pressure (UHP) belt, consisting of mafic and ultramafic rocks (including garnet‐bearing types) within a metasedimentary sequence of gneisses and quartzites, is exposed at the Lanterman Range (northern Victoria Land). Garnet‐bearing ultramafic rocks evolved through at least six metamorphic stages. Stage 1 is defined by medium‐grained garnet + olivine + low‐Al orthopyroxene + clinopyroxene, whereas finer‐grained garnet + olivine + orthopyroxene + clinopyroxene + amphibole constitutes the stage 2 assemblage. Stage 3 is defined by kelyphites of orthopyroxene + clinopyroxene + spinel ± amphibole around garnet. Porphyroblasts of amphibole replacing garnet and clinopyroxene characterize stage 4. Retrograde stages 5 and 6 consist of tremolite + Mg‐chlorite ± serpentine ± talc. A high‐temperature (~950 °C), spinel‐bearing protolith (stage 0), is identified on the basis of orthopyroxene + clinopyroxene + olivine + spinel + amphibole inclusions within stage 1 garnet. The P–T estimates for stage 1 are indicative of UHP conditions (3.2–3.3 GPa and 764–820 °C), whereas stage 2 is constrained between 726–788 °C and 2.6–2.9 GPa. Stage 3 records a decompression up to 1.1–1.3 GPa at 705–776 °C. Stages 4, 5 and 6 reflect uplift and cooling, the final estimates yielding values below 0.5 GPa at 300–400 °C. The retrograde P–T path is nearly isothermal from UHP conditions up to deep crustal levels, and becomes a cooling–unloading path from intermediate to shallow levels. The garnet‐bearing ultramafic rocks originated in the mantle wedge and were probably incorporated into the subduction zone with felsic and mafic rocks with which they shared the subsequent metamorphic and geodynamic evolution. The density and rheology of the subducted rocks are compatible with detachment of slices along the subduction channel and gravity‐driven exhumation.  相似文献   

2.
The main hole (MH), and pre-pilot holes PP1, and PP3 of the Chinese Continental Scientific Drilling Project (CCSD) penetrated three different garnet peridotite bodies in the Sulu ultrahigh pressure (UHP) metamorphic belt, which are 80 m, 120 m, and 430 m thick, respectively. The bodies occur as tectonic blocks hosted in eclogite (MH peridotite) and gneisses (PP1 and PP3 peridotites). The peridotites in the MH are garnet wehrlites, whose protoliths were ultramafic cumulates based on olivine compositions (Fo79-89) and other geochemical features. Zoned garnet and omphacite (with 4-5 wt.% Na2O) are typical metamorphic minerals in these rocks, and, along with P-T estimates based on mineral pairs, suggest that the rocks have undergone UHP metamorphism. SHRIMP U-Pb isotope dating of zircon from the garnet wehrlite yielded a Paleozoic protolith age (ca. 346-461 Ma), and a Mesozoic UHP metamorphic age (ca. 220-240 Ma). The peridotites in PP1 consist of interlayered garnet (Grt)-bearing and garnet-free (GF) peridotite. Both types of peridotite have depleted mantle compositions (Mg# = 90-92) and they display transitional geochemical features. The intercalated layers probably reflect variations in partial melting rather than pressure variations during metamorphism, and the garnets may have been formed by exsolution from orthopyroxene during exhumation. These peridotites were probably part of the mantle wedge above the subduction zone that produced the UHP metamorphism and thus belonged to the North China Block before its tectonic emplacement. The exhumation of the subducted Yangtze Block brought these mantle fragments to shallow crustal levels. The ultramafic rocks in PP3 are dominantly dunite with minor garnet dunite. Their high Mg# (92-93) and relatively uniform chemical compositions indicate that they are part of a depleted mantle sequence. The presence of garnet replacing spinel and enclosing pre-metamorphic minerals such as olivine, clinopyroxene and spinel suggests that these rocks have undergone progressive metamorphism. SHRIMP U-Pb isotope dating of zircon from these rocks yielded two age groups: 726 ± 56 Ma for relic magmatic zircon grains and 240 ± 2.7 Ma for the newly formed metamorphic zircon. The older group is similar in age to granitic intrusions within the Dabie-Sulu belt, suggesting that the PP3 garnet peridotite may record the early emplacement of the peridotite into the crust. The younger dates coincide with the age of UHP metamorphism during continent-continent collision between the Yangtze and North China Blocks, suggesting that these peridotites were subducted to depths equivalent to the coesite facies and later exhumed. Thus, the garnet peridotites in the CCSD cores include both ultramafic rocks that existed originally in the subducted plate and rocks from the mantle wedge above the subducted plate, i.e., part of the North China Block.  相似文献   

3.
Garnet peridotites from the southern Su‐Lu ultra‐high‐pressure metamorphic (UHPM) terrane, eastern China, contain porphyroblastic garnet with aligned inclusions comprising a low‐P–T mineral assemblage (chlorite, hornblende, Na‐gedrite, Na‐phlogopite, talc, spinel and pyrite). Orthopyroxene porphyroblasts show fine exsolution lamellae of clinopyroxene and minor chromite. A clinopyroxene inclusion in garnet shows some orthopyroxene exsolution lamellae. Both the rims of porphyroblastic pyroxene and garnet and the matrix pyroxene and garnet crystallized at the expense of olivine. This is interpreted as a result of metasomatism of the peridotites by an SiO2‐rich melt at UHP conditions. A chromian garnet further overgrew on the rims of the garnet. The XMg values (Mg/(Mg+Fe)) of porphyroblastic garnet decrease from core to rim and vary in different peridotite samples, while the compositions of both the porphyroblastic and the matrix pyroxene are similar in terms of Ca–Mg–Fe. The Mg‐rich cores of porphyroblastic garnet and orthopyroxene record high temperatures and pressures (c. 1000 °C, ≥5.1 GPa), whereas the matrix minerals, including the rims of porphyroblasts, record much lower P–T (c. 4.2 GPa, c. 760 °C). Sm–Nd data give apparent isochron ages of c. 380 Ma and negative εNd(0) values (c.?9). These dates are considered meaningless due to isotopic disequilibrium between garnet cores and the rest of the rocks. The isotopic disequilibrium was probably caused by metasomatism of the peridotites by melt/fluids derived from the coevally subducted crustal materials. On the other hand, the Rb–Sr isotopic systems of phlogopite and clinopyroxene appear to have reached equilibrium and record a cooling age of c. 205 Ma. It is suggested that the garnet peridotites were originally emplaced into a low‐P–T environment prior to the c. 220 Ma continental collision, during which they were subducted together with crustal rocks to mantle depth and subjected to UHP metamorphism. An important corollary is that at least some of the coevally subducted crustal rocks in the Su‐Lu terrane have been subjected to peak metamorphism at P–T conditions much higher than presently estimated (≥2.7 GPa, ≤800 °C).  相似文献   

4.
宋衍茹  叶凯  续海金 《岩石学报》2009,25(1):147-158
苏鲁超高压变质地体中发现了大量包裹在超高压(UHP)变质片麻岩和混合岩中的造山带石榴橄榄岩。根据它们的野外产出特征和全岩地球化学成分,其中一部分石榴橄榄岩的原岩来自于亏损地幔,后来被卷入俯冲陆壳并经受过俯冲陆壳产生的熔/流体的交代。但是,对这些岩石早期的亏损过程尚缺乏清晰的认识。本文报道了东海芝麻坊石榴子石二辉橄榄岩早期变质演化的新证据。根据详细的变质反应结构观察和矿物成分研究,芝麻坊石榴子石二辉橄榄岩在经历高压低温俯冲带型超高压变质之前经历了至少两期变质演化。其原岩矿物组合由石榴子石变斑晶的高Ca-Cr核部及其中包裹的高Mg单斜辉石、高Al-Cr斜方辉石和高Mg-Ni橄榄石所记录;指示芝麻坊石榴子石二辉橄榄岩的原岩为高温-高压的富集石榴子石二辉橄榄岩。第二期矿物组合为包裹在低Cr变斑晶石榴子石幔部和细粒新生石榴子石核部的大量富Al铬铁矿和高Mg低Ni橄榄石以及少量高Mg斜方辉石。该期组合未发现单斜辉石,表明岩石随后被转变为高温低压的难熔尖晶石方辉橄榄岩或尖晶石纯橄岩。芝麻坊石榴子石二辉橄榄岩的早期变质演化记录了它们被卷入大陆板片俯冲带之前的地幔楔上升对流过程。笔者认为芝麻坊石榴子石二辉橄榄岩的原岩来源于早期俯冲大洋板片之上的深部高温富集地幔楔,洋壳俯冲过程中的地幔楔对流导致其上升到弧后或岛弧之下的地幔楔浅部,减压部分熔融使原本富集的石榴子石二辉橄榄岩转化为难熔的尖晶石方辉橄榄岩或尖晶石纯橄岩。  相似文献   

5.
Chemical variations along with changes in microstructure ofthe principal constituent minerals make it possible to identifyat least four equilibrium stages in the evolution of the Yangkougarnet peridotite in the Su-Lu ultrahigh-pressure metamorphicbelt, eastern China: Stage I—a primary garnet lherzolitestage represented by coarse-grained (a few millimeters size)porphyroclastic aluminous pyroxenes + chromian spinel ±garnet; Stage II—an ultrahigh-pressure (UHP) stage definedby fine-grained matrix phases (0·1–0·3 mmsize) of garnet + extremely low-Al orthopyroxene + high-Na clinopyroxene+ chromite; Stage III—a medium-pressure stage definedby fine-grained mineral aggregates (<0·1–0·2mm size) mainly composed of aluminous spinel + high-Al orthopyroxenein the matrix; Stage IV—an amphibolite- to greenschist-faciesstage defined by poikiloblastic amphibole. Orthopyroxene–clinopyroxenethermometry and an empirical spinel barometer give temperaturesof around 800–830°C and pressures of 1·2–2·9GPa for porphyroclasts of Stage I. Garnet–orthopyroxene,garnet–clinopyroxene and empirical spinel geothermobarometersgive relatively uniform PT conditions for the matrixgarnet–orthopyroxene–clinopyroxene–chromiteassemblage of Stage II (  相似文献   

6.
The inter- and intragrain distribution of Li and Be in the subduction-related ultrahigh-pressure (UHP) garnet peridotite from Alpe Arami, Central Swiss Alps, was studied using secondary ion mass spectrometry. The data indicate substantial Li infiltration during exhumation of this ultramafic body. Orthopyroxene porphyroclasts and neoblasts are characterised by low Li contents (0.11-0.36 µg/g) typical of depleted peridotites, whereas Li zonation profiles across porphyroclasts of garnet and clinopyroxene document a metasomatic addition of Li. Small clinopyroxene grains in the matrix contain extremely high and variable abundances of Li (4-16 µg/g). In marked contrast to the behaviour of Li, the abundances of Be (77-134 ng/g) are similar in all textural types of clinopyroxene. Olivine porphyroclasts and neoblasts are characterised by somewhat elevated Li contents (0.95-1.79 µg/g), typical of fertile lherzolites. All textural types of clinopyroxene in the Alpe Arami peridotite are enriched in Li, providing evidence for infiltration of Li-rich and Be-poor aqueous solutions after the peak of UHP metamorphism. The lack of Li enrichment in orthopyroxene is consistent with orthopyroxene dissolution and formation of secondary olivine and clinopyroxene during metasomatism. Cr-diopside pyroxenite veins and boudins within the peridotite show low abundances of Li, with 0.7-2.5 µg/g in clinopyroxene and 1.1-1.5 µg/g in olivine. These pyroxenites likely represent precipitates from aqueous solutions which infiltrated the host peridotite after Li enrichment of the peridotite. A slab-derived nature of the metasomatic agent is suggested by the general lack of Ti enrichment in the Alpe Arami rocks.  相似文献   

7.
Garnet peridotites occur in quartzofeldspathic gneisses in the Northern Qaidam Mountains, western China. They are rich in Mg and Cr, with mineral compositions similar to those in mantle peridotites found in other orogenic belts and as xenoliths in kimberlite. Garnet‐bearing lherzolites interlayered with dunite display oriented ilmenite and chromite lamellae in olivine and pyroxene lamellae in garnet that have been interpreted to indicate pressures in excess of 6 GPa. However, some garnet porphyroblasts include hornblende, chlorite and spinel + orthopyroxene symplectite after garnet; some clinopyroxene porphyroblasts include abundant actinolite/edenite, calcite and lizardite in the lherzolite; some olivine porphyroblasts (Fo92) include an earlier generation Mg‐rich olivine (Fo95–99), F‐rich clinohumite, pyroxene, chromite, anthophyllite/cummingtonite, Cl‐rich lizardite, carbonates and a new type of brittle mica, here termed ‘Ca‐phlogopite’, in the associated dunite. The pyrope content of garnet increases from core to rim, reaching the pyrope content (72 mol.%) of garnet typically found in the xenoliths in kimberlite. The simplest interpretation of these observations is that the rock association was formerly mantle peridotite emplaced into the oceanic crust that was subjected to serpentinization by seawater‐derived fluids near the sea floor. Dehydration during subduction to 3.0–3.5 GPa and 700 °C transformed these serpentinites into garnet lherzolite and dunite, depending on their Al and Ca contents. Pseudosection modelling using thermocalc shows that dehydration of the serpentinites is progressive, and involved three stages for Al‐rich and two stages for Al‐poor serpentinites, corresponding to the breakdown of the key hydrous minerals. Static burial and exhumation make olivine a pressure vessel for the pre‐subduction mineral inclusions during ultrahigh‐pressure (UHP) metamorphism. The time span of the UHP event is constrained by the clear interface between the two generations of olivine to be very short, implying rapid subduction and exhumation.  相似文献   

8.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

9.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

10.
The ultramafic body sampled in the Chinese Continental Scientific Drilling (CCSD) Hole PP3 is located in the eastern part of the Dabie-Sulu UHP metamorphic belt near Donghai County. It is about 480 m thick, and consists chiefly of garnet peridotite, dunite and serpentinite. The principal minerals include olivine, chromium spinel, diopside, enstatite, garnet with minor secondary augite, phlogopite and amphibole. Both the olivine and orthopyroxene are highly magnesian, and the garnet is pyropic with 5.4-6.4% CaO and 0.3-3.3% Cr2O3. Two generations of clinopyroxene are present; an early diopside followed by augite. Chromium spinels are highly variable with Cr#s (100Cr / (Cr + Al)) between 51 and 89, and their compositions reflect different processes of formation, namely partial melting and eclogite, amphibole and greenschist facies metamorphism. The Mg#s (100 Mg / (Mg + Fe2+))of the spinels correlate positively with the Cr#s but negatively with oxygen fugacity. Based on the spinel compositions the ultramafic rocks originated in the shallow mantle, then subducted to depths of more than 100 km and finally exhumed to the surface. They underwent partial melting at shallow depths, mostly in the spinel facies, and were later transformed into garnet peridotites during deep subduction. All of the rocks were weakly metasomatized during exhumation and were subjected to retrograde metamorphism.  相似文献   

11.
Numerous lenticular bodies of ultramafic rocks occur withinthe upper amphibolite- to granulitefacies metamorphic terraneof the Austrides between the Non and Ultimo valleys (Nonsbergregion), northern Italy. The ultramafic rocks are divided intotwo textural types: (a) coarse-type; and (b) finetype. The coarse-typerocks have the protogranular texture and are predominantly spinellherzolite. Some coarse-type spinel lherzolites have partlytransformed to garnet lherzolite. The fine-types are consideredto be metamorphic derivatives of the former, and the observedmineral assemblages are: (1) olivine + orthopyroxene + clinopyroxene+ garnet + amphibole ? spinel, (2) olivine + orthopyroxene +garnet + amphibole + spinel; (3) olivine + orthopyroxene + amphibole+ spinel; and (4) olivine+ orthopyroxene + amphibole + chlorite.Based on the microprobe analyses of constituent minerals fromten representative peridotite samples, physical conditions ofthe metamorphism, particularly that of the spinel to garnetlherzolite transformation, are estimated. Applications of pyroxenegeothermometry yield temperature estimates of 1100–1300?Cfor the formation of the primary spinel lherzolite, and 700–800?Cfor that of the fine-type peridotites. A pressure range of 16–28kb is obtained for the garnet lherzolite crystallization dependingon the choice of geobarometers. Two alternative P-T paths, i.e.(1) isobaric cooling or (2) pressure-increase and temperaturedecrease are considered and their geodynamic implications discussed.  相似文献   

12.
A zoned kelyphite after garnet, from a garnet pyroxenite layer,the Ronda peridotite. Spain, has been studied and the mechanismof kelyphite formation is discussed. The kelyphite is an extremelyfinegrained symplectitic mixture of orthopyroxene, spinel, olivine,plagioclase, and ilmenite. It is concentrically zoned, formingthree mineralogical subzones. They are, from adjacent to a garnetgrain toward a clinopyroxene side, zone I (orthopyroxene+spinel+ plagioclase), zone II (olivine+spinel+plagioclase), and zoneIII (olivine+plagioclase). The analysis of phase equilibriashows that this mineralogical zonation can develop stably asa result of the presence of chemical potential gradients. Onthe basis of microprobe chemical analyses for each zone, materialtransfer across the zone that took place during the kelyphitizationwas quantitatively evaluated, and by locating the initial grainboundary between garnet and clinopyroxene grains and by writingmetasomatic reactions for each zone boundary, a simple dynamicmodel for the kelyphite formation is proposed. The kelyphiteformation probably took place when the host Ronda peridotiteascended from the upper mantle to the crust. It involved a co-operativebreakdown of the garnet and aluminous clinopyroxene, being accompaniedby a material transfer across the zone boundaries. By examiningthe Fe-Mg partitioning between olivine, spinel, and orthopyroxenein the kelyphite and by examining the Al content of the orthopyroxene,an attainment of local equilibrium has been confirmed, and thephysical conditions of the kelyphite formation have been estimatedto be 620–700C and 4–8 kbar.  相似文献   

13.
Two Rongcheng eclogite‐bearing peridotite bodies (Chijiadian and Macaokuang) occur as lenses within the country rock gneiss of the northern Sulu terrane. The Chijiadian ultramafic body consists of garnet lherzolite, whereas the Macaokuang body is mainly meta‐dunite. Both ultramafics are characterized by high MgO contents, low fertile element concentrations and total REE contents, which suggests that they were derived from depleted, residual mantle. High FeO contents, an LREE‐enriched pattern and trace‐element contents indicate that the bulk‐rock compositions of these ultramafic rocks were modified by metasomatism. Oxygen‐isotope compositions of analysed garnet, olivine, clinopyroxene and orthopyroxene from these two ultramafic bodies are between +5.2‰ and +6.2‰ (δ18O), in the range of typical mantle values (+5.1 to +6.6‰). The eclogite enclosed within the Chijiadian lherzolite shows an LREE‐enriched pattern and was formed by melts derived from variable degrees (0.005–0.05) of partial melting of peridotite. It has higher δ18O values (+7.6‰ for garnet and +7.7‰ for omphacite) than those of lherzolite. Small O‐isotope fractionations (ΔCpx‐Ol: 0.4‰, ΔCpx‐Grt: 0.1‰, ΔGrt‐Ol: 0.3–0.4‰) in both eclogite and ultramafic rocks suggest isotopic equilibrium at high temperature. The P–T estimates suggest that these rocks experienced subduction‐zone ultrahigh‐pressure (UHP) metamorphism at ~700–800 °C, 5 GPa, with a low geothermal gradient. Zircon from the Macaokuang eclogite contains inclusions of garnet and diopside. The 225 ± 2 Ma U/Pb age obtained from these zircon may date either the prograde conditions just before peak metamorphism or the UHP metamorphic event, and therefore constrains the timing of subduction‐related UHP metamorphism for the Rongcheng mafic–ultramafic bodies.  相似文献   

14.
Garnet peridotites and pyroxenites have been reported from 11 of the 15 or so high-pressure/ultrahigh-pressure (HP/UHP) terranes in Eurasia. Most of these ultramafic rocks are Mg-Cr types, derived from depleted upper mantle, but some are more Fe-rich and originated by crystallization in ultramafic-mafic igneous complexes. The peridotites are polymetamorphic, with HP/UHP garnet-bearing assemblages being followed by a succession of retrograde assemblages related to exhumation and cooling; some also contain evidence for a pre-HP/UHP stage, such as spinel inclusions in garnet or the presence of Ti-clinohumite. Equilibration conditions have been calculated from all available analyses of garnetiferous assemblages, by application of the olivine-garnet Fe-Mg exchange thermometer and the Alin-orthopyroxene barometer, resulting in two distinct P-T regimes for garnet peridotites—one at high P/T in the coesite and diamond fields, and another at low P/T in the vicinity of the spinel-to-garnet transition.

Garnet peridotites are thought to have evolved in at least four different tectonothermal settings, including: (1) emplacement of peridotites into oceanic or continental crust, followed by transport of peridotites and associated crust to UHP conditions by a subducting plate; (2) transfer of peridotites from a mantle wedge to the crust of an underlying, subducting plate; (3) origination from upwelling asthenosphere that passed through a high-temperature spinel peridotite stage, followed by cooling into the garnet peridotite field; and (4) extraction of garnet peridotites from ancient subcontinental lithosphere, perhaps by deep-seated faulting within a continental plate.  相似文献   

15.
Eclogite facies mineral assemblages are variably preserved in mafic and ultramafic rocks within the Western Gneiss Region (WGR) of Norway. Mineralogical and microstructural data indicate that some Mg–Cr-rich, Alpine-type peridotites have had a complex metamorphic history. The metamorphic evolution of these rocks has been described in terms of a seven-stage evolutionary model; each stage is characterized by a specific mineral assemblage. Stages II and III both comprise garnet-bearing mineral assemblages. Garnet-bearing assemblages are also present in Fe–Ti-rich peridotites which commonly occur as layers in mafic complexes. Sm–Nd isotopic results are reported for mineral and whole rock samples from both of these types of peridotites and related rocks. The partitioning of Sm and Nd between coexisting garnet and clinopyroxene is used to assess chemical equilibrium. One sample of Mg–Cr-type peridotite shows non-disturbed partitioning of Sm and Nd between Stage II garnet and clinopyroxene pairs and yields a garnet–clinopyroxene–whole-rock date of 1703 ± 29 Ma (I= 0.51069, MSWD = 0.04). This is the best estimate for the age of the Stage II high-P assemblage. Other Stage II garnet–clinopyroxene pairs reflect later disturbance of the Sm–Nd system and yield dates in the range 1303 to 1040 Ma. These dates may not have any geological significance. Stage III garnet–clinopyroxene pairs typically have equilibrated Sm–Nd partitioning and two samples yield dates of 437 ± 58 and 511 ± 18 Ma. This suggests that equilibration of the Stage III high-P assemblage is related to the Caledonian orogeny and is more or less contemporaneous with high-P metamorphism of ‘country-rock’eclogites in the surrounding gneisses. The Sm–Nd mineral data for the Fe–Ti-rich garnet peridotites and for a superferrian eclogite, which occurs as a dyke within the Gurskebotn Mg–Cr-type peridotite, are consistent with a Palaeozoic high-P metamorphism. Finally a synoptic P–T–t path is proposed for the Mg–Cr-type peridotites which is consistent with the petrological and geochronological data.  相似文献   

16.
Corona and inclusion textures of a metatroctolite at the contact between felsic granulite and migmatites of the Gföhl Unit from the Moldanubian Zone provide evidence of the magmatic and metamorphic evolution of the rocks. Numerous diopside inclusions (1–10 μm, maximum 20 μm in size) in plagioclase of anorthite composition represent primary magmatic textures. Triple junctions between the plagioclase grains in the matrix are occupied by amphibole, probably pseudomorphs after clinopyroxene. The coronae consist of a core of orthopyroxene, with two or three zones (layers); the innermost is characterized by calcic amphibole with minor spinel and relicts of clinopyroxene, the next zone consists of symplectite of amphibole with spinel, sapphirine and accessory corundum, and the outermost is formed by garnet and amphibole with relicts of spinel. The orthopyroxene forms a monomineralic aggregate that may contain a cluster of serpentine in the core, suggesting its formation after olivine. Based on mineral textures and thermobarometric calculations, the troctolite crystallized in the middle to lower crust and the coronae were formed during three different metamorphic stages. The first stage relates to a subsolidus reaction between olivine and anorthite to form orthopyroxene. The second stage involving amphibole formation suggests the presence of a fluid that resulted in the replacement of igneous orthopyroxene and governed the reaction orthopyroxene + anorthite = amphibole + spinel. The last stage of corona formation with amphibole + spinel + sapphirine indicates granulite facies conditions. Garnet enclosing spinel, and its occurrence along the rim of the coronae in contact with anorthite, suggests that its formation occurred either during cooling or both cooling and compression but still at granulite facies conditions. The zircon U–Pb data indicate Variscan ages for both the troctolite crystallization (c. 360 Ma) and corona formation during granulite facies metamorphism (c. 340 Ma) in the Gföhl Unit. The intrusion of troctolite and other Variscan mafic and ultramafic rocks is interpreted as a potential heat source for amphibolite–granulite facies metamorphism that led to partial re‐equilibration of earlier high‐ to ultrahigh‐P metamorphic rocks in the Moldanubian Zone. These petrological and geochronological data constrain the formation of HP–UHP rocks and arc‐related plutonic complex to westward subduction of the Moldanubian plate during the Variscan orogeny. After exhumation to lower and/or middle crust, the HP–UHP rocks underwent heating due to intrusion of mafic and ultramafic magma that was generated by slab breakoff and mantle upwelling.  相似文献   

17.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   

18.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   

19.

A new ultrahigh-pressure (UHP) metamorphic terrane, the Marun-Keu eclogite–peridotite–gneiss complex was established in the Polar Urals (Russia). Owing to the P–T parameters of formation of garnet peridotites obtained for the first time, it was established that they experienced UHP metamorphism with a peak in the diamond stability field (39 kbar, 830oC) due to subduction of rocks of the Marun-Keu complex to the mantle (a depth of more than 100 km). Relics of plagioclase peridotites preserved in central parts of large peridotite bodies and petrochemical data are evidence that Marun-Key garnet peridotites cannot be of mantle origin. A basic-ultrabasic intrusion, which formed in the upper crust, can be considered as their protolith. Later, rocks of the massif plunged to the mantle along the subduction zone and metamorphosed under high-P to ultrahigh-P conditions.

  相似文献   

20.
The Raobazhai ultramafic body of the North Dabie Complex is re-interpreted as a mantle-derived peridotitic slice enclosed in, and isofacially metamorphosed with, surrounding granulite-to-amphibolite facies gneisses. The ultramafic sheet consists mainly of metaharzburgite, but includes subunits of metadunite and mylonitic lherzolite. The rocks contain spinel but neither garnet nor plagioclase. However, in the mylonitic lherzolite, fine-grained intergrowths of spinel, orthopyroxene and clinopyroxene outline domains resembling the habit of garnet in two dimensions; broad-beam microprobe analyses imply pseudomorphs after a pyropic garnet precursor. The mineral assemblage of the metadunite and metaharzburgite is: olivine (Fo92)+orthopyroxene (En92)+tremolitic-to-magnesiohornblende+Mg–Al-chromite, indicating amphibolite facies recrystallization. The mineral assemblage of the mylonitic lherzolite is: olivine (Fo90)+orthopyroxene (En90)+clinopyroxene+Cr-bearing spinel+pargasitic amphibole, indicative of granulite-to-amphibolite facies metamorphism. Phase equilibria and geothermometric estimations show that the Raobazhai meta-ultramafics have undergone at least three stages of recrystallization: (I) 950–990 °C, (II) 750–860 °C, and (III) 670–720 °C, assuming equilibrium in the spinel peridotite stability field ( c. 6–15 kbar), although an early, high-pressure stage (≥18 kbar) is probable, based on the inferred garnet pseudomorphs. Petrochemical and geothermobarometric data suggest that the ultramafic slice represents a fragment of the mantle wedge, tectonically incorporated into subducted continental crust and re-equilibrated at granulite-to-amphibolite facies conditions while being exhumed to shallow levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号