首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report on two optical candidates for the counterpart to an X-ray source in the Small Magellanic Cloud , 1WGA J0053.8−7226, identified as a serendipitous X-ray source from the ROSAT Position Sensitive Proportional Counter (PSPC) archive, and also observed by the Einstein Imaging Proportional Counter . Its X-ray properties, namely the hard X-ray spectrum, flux variability and column density, indicate a hard, transient source, with a luminosity of ∼     XTE and ASCA observations have confirmed the source to be an X-ray pulsar, with a 46-s spin period. Our optical observations reveal two possible candidates within the error circle. Both exhibit strong H α and weaker H β emission. The optical colours indicate that both objects are Be-type stars. The Be nature of the stars implies that the counterpart is most likely a Be/X-ray binary system. Subsequent infrared (IR) photometry ( JHK ) of one of the objects shows that the source varies by at least 0.5 mag, while the     measured nearly simultaneously with the UBVRI and spectroscopic observations indicate an IR excess of ∼0.3 mag.  相似文献   

3.
The fields of eight X-ray sources in the Magellanic Clouds believed to be Be/X-ray binaries have been searched for possible Be-star counterparts. BVR c and H α CCD imaging was employed to identify early-type emission stars through colour indices and H α fluxes. Spectroscopy of five sources confirms the presence of H α emission in each case. Based on the positional coincidence of emission-line objects with the X-ray sources, we identify Be-star counterparts to the ROSAT sources RX J0032.9-7348, RX J0049.1-7250, RX J0054.9-7226 and RX J0101.0-7206, and to the recently discovered ASCA source AX J0051-722. We confirm the Be star nature of the counterpart to the HEAO1 source H0544-66. In the field of the ROSAT source RX J0051.8-7231 we find that there are three possible counterparts, each showing evidence for H α emission. We find a close double in the error circle of the EXOSAT source EXO 0531.1-6609, each component of which could be a Be star associated with the X-ray source.  相似文献   

4.
5.
We investigate the optical counterparts of recently discovered Be/X-ray binaries in the Small Magellanic Cloud (SMC). In total four sources, SXP101, SXP700, SXP348 and SXP65.8 were detected during the Chandra survey of the wing of the SMC. SXP700 and SXP65.8 were previously unknown. Many optical ground-based telescopes have been utilized in the optical follow-up, providing coverage in both the red and blue bands. This has led to the classification of all of the counterparts as Be stars and confirms that three lie within the Galactic spectral distribution of known Be/X-ray binaries. SXP101 lies outside this distribution and is the latest spectral type known. Monitoring of the Hα emission line suggests that all the sources barring SXP700 have highly variable circumstellar discs, possibly a result of their comparatively short orbital periods. Phase-resolved X-ray spectroscopy has also been performed on SXP65.8, revealing that the emission is indeed harder during the passage of the X-ray beam through the line of sight.  相似文献   

6.
We present Rossi X-ray Timing Explorer ( RXTE ) observations of the Be/X-ray transient EXO 2030+375 during an outburst after a period of quiescence between 1993 August and 1996 April. When active, EXO 2030+375 is normally detected at each periastron passage of the neutron star. Our observations correspond to the third periastron passage after the source 'turned on' again. All outbursts after the quiescent period, including the one reported here, have been occurring at a much earlier binary phase than in the past. We discuss the possible mechanisms that may explain this shift in the onset of the outburst. Pulsations in the X-ray radiation are detected throughout the entire run. The neutron star spun up during the outburst at a rate of −1.16×10−8 s s−1, but no variations in the shape of the pulse profile as a function of intensity were seen. A correlation between the hardness ratio and the intensity is observed at low energies (6–12/2–6 keV). By comparing the magnetospheric and corotation radii we argue that the neutron star spins at a rate close to the equilibrium period. Finally, we perform pulse-phase spectroscopy and comment on changes seen as a function of spin phase.  相似文献   

7.
We report observations that confirm the identities of the optical counterparts to the transient sources RX J0544.1–7100 and RX J0520.5–6932 . The counterparts are suggested to be B-type stars. Optical data from the observations carried out at ESO and SAAO, together with results from the OGLE data base, are presented. In addition, X-ray data from the RXTE All-Sky Monitor are investigated for long-term periodicities. A strong suggestion for a binary period of 24.4 d is seen in RX J0520.5–6932 from the OGLE data.  相似文献   

8.
We present a multi-wavelength study of the Be/X-ray binary system EXO 2030+375. We report that the Be companion is currently in a low-activity phase as indicated by the notable decrease of the infrared and optical emission. If this trend continues the source will lose its circumstellar envelope. Infrared spectroscopy in the IJHK bands is presented for the first time, along with optical and X-ray observations. These infrared spectra agree with the optical companion being an early-type (B0) main-sequence star. When active EXO 2030+375 shows an X-ray outburst at each periastron passage of the neutron star. In addition to the maximum X-ray luminosity displayed at orbital phase ∼0.0, we find a smaller maximum in the light curve at phase ∼0.5. This second intensity peak may be explained if the velocity of the wind is lower than or comparable to the orbital velocity of the neutron star at apastron. We also comment on the relation between the optical/infrared behaviour and the X-ray emission and argue that the X-ray inactive period observed between 1993 August and 1996 April is a result of centrifugal inhibition of accretion of matter rather than a low-activity circumstellar disc.  相似文献   

9.
We have investigated the long-term X-ray variability, defined as the root-mean-square (rms) of the All Sky Monitor Rossi X-ray Timing Explorer (ASM RXTE ) light curves, of a set of galactic Be/X-ray binaries and searched for correlations with system parameters, such as the spin period of the neutron star and the orbital period and eccentricity of the binary. We find that systems with larger rms are those harbouring fast-rotating neutron stars, low eccentric and narrow orbits. These relationships can be explained as the result of the truncation of the circumstellar disc. We also present an updated version of the Hα equivalent width–orbital period diagram, including sources in the Small Magellanic Cloud (SMC). This diagram provides strong observational evidence of the interaction of neutron star with the circumstellar envelope of its massive companion.  相似文献   

10.
11.
We investigate the X-ray and optical properties of a sample of X-ray bright sources from the Small Magellanic Cloud (SMC) Wing Survey. We have detected two new pulsars with pulse periods of 65.8 s (CXOU J010712.6−723533) and 700 s (CXOU J010206.6−714115), and present observations of two previously known pulsars RX J0057.3−7325 (SXP101) and SAX J0103.2−7209 (SXP348). Our analysis has led to three new optical identifications for the detected pulsars. We find long-term optical periods for two of the pulsars, CXOU J010206.6−714115 and SXP101, of 267 and 21.9 d, respectively. Spectral analysis of a subset of the sample shows that the pulsars have harder spectra than the other sources detected. By employing a quantile-based colour–colour analysis we are able to separate the detected pulsars from the rest of the sample. Using archival catalogues we have been able to identify counterparts for the majority of the sources in our sample. Combining this with our results from the temporal analysis of the Chandra data and archival optical data, the X-ray spectral analysis, and by determining the X-ray to optical flux ratios we present preliminary classifications for the sources. In addition to the four detected pulsars, our sample includes two candidate foreground stars, 12 probable active galactic nuclei, and five unclassified sources.  相似文献   

12.
13.
14.
The results of a 7-yr optical and UV spectroscopic study of the high-mass X-ray binary A 0535+26 are presented. It was found that throughout the period of the observations the line profile of Hα showed considerable variability. A correlation between the equivalent width of Hα and both V -band magnitude and ( B − V ) colour excess was observed, albeit with considerable scatter present in the data set. A giant X-ray flare in early 1994 was accompanied by a fading in optical and infrared photometric bands, and a reduction in the equivalent width of Hα. When the star was observed in 1994 September, it was found to have developed a double-peaked Hα profile, and further observations saw the V/R peak ratio vary cyclically, with a period of ∼1 yr. If this is identified as a global one-armed oscillation, it becomes the shortest period ever observed in a Be star. The accompanying photometric and spectroscopic observations provide a test of any theory seeking to describe the onset and behaviour of such a density wave.  相似文献   

15.
We report observations which identify the optical/IR counterpart to the ROSAT X-ray transient RX J0117.6−7330. The counterpart is suggested to be a B1–B2 star (luminosity class III–V) showing an IR excess and strong Balmer emission lines. The distance derived from reddening and systemic velocity measurements is consistent with the distance derived from X-ray measurements and puts the source in the Small Magellanic Cloud (SMC).  相似文献   

16.
17.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

18.
19.
We present infrared spectroscopy of the Be/X-ray binary HDE 245770/A0535+26 obtained over the period 1992–1995. The spectra show significant variability, reflecting changes in the circumstellar environment during this time. A reduction in the flux observed in the Paschen series lines between 1993 December and 1994 September correlates with a similar reduction in both the strength of Hα and the optical continuum emission, which can be attributed to a reduction in the emission measure of the disc. A turnover between optically thin and thick emission is seen for both Paschen and Brackett series lines, and allows an estimate of the disc density as ∼1012 cm−3. Echelle spectroscopy reveals strong similarities between the He I 1.008, 2.058 μm, Hα and Paschen series line profiles, suggesting their formation in a similar (and asymmetric) region of the disc. In contrast, the line profile of He I 6678 Å indicates that it is formed at smaller radii than the other transitions.  相似文献   

20.
We report on the long-term variability of the Be/X-ray binary LS I +61° 235/RX J0146.9+6121. New optical spectroscopic and infrared photometric observations confirm the presence of global one-armed oscillations in the circumstellar disc of the Be star, and allow us to derive a V R band quasi-period of 1240±30 d. Pronounced shell events, reminiscent of the spectacular variations in Be stars, are also seen. We have found that the J , H and K infrared photometric bands vary in correlation with the spectroscopic V R variations, implying that the one-armed disc oscillations are prograde. The effect of the oscillations is not only seen in the H α line but is also seen in the He  i λ 6678 and Paschen lines. As these lines are formed at different radii in the equatorial disc of the Be star, such effects confirm the global nature of the perturbation. The Keplerian disc has been found to be denser than the average for a sample of isolated Be stars, which may be indicative of some kind of interaction with the compact companion. Finally, from a Rossi X-ray Timing Explorer observation we derive a spin period of the neutron star of 1404.5±0.5 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号