首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small local earthquakes from two aftershock sequences in Porto dos Gaúchos, Amazon craton—Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q c) of coda waves modeled using Qc = Q0 fhQ_{\rm c} =Q_{\rm 0} f^\eta , where Q 0 is the coda quality factor at frequency of 1 Hz and η is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239–252, 2008), based in the temporal attenuation coefficient, χ(f) instead of Q(f), given by the equation c(f)=g+\fracpfQe \chi (f)\!=\!\gamma \!+\!\frac{\pi f}{Q_{\rm e} }, for the calculation of the geometrical attenuation (γ) and effective attenuation (Qe-1 )(Q_{\rm e}^{-1} ). Q c values have been computed at central frequencies (and band) of 1.5 (1–2), 3.0 (2–4), 6.0 (4–8), 9.0 (6–12), 12 (8–16), and 18 (12–24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin Qc = (98±12)f(1.14±0.08)Q_{\rm c} =(98\pm 12)f^{(1.14\pm 0.08)}, for the surrounding shield Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)}, and for the whole region of Porto dos Gaúchos Qc = (99±19)f(1.17±0.02)Q_{\rm c} =(99\pm 19)f^{(1.17\pm 0.02)}. Using the independent frequency model, we found: for the cratonic zone, γ = 0.014 s − 1, Qe-1 = 0.0001Q_{\rm e}^{-1} =0.0001, ν ≈ 1.12; for the basin zone with sediments of ~500 m, γ = 0.031 s − 1, Qe-1 = 0.0003Q_{\rm e}^{-1} =0.0003, ν ≈ 1.27; and for the Parecis basin with sediments of ~1,000 m, γ = 0.047 s − 1, Qe-1 = 0.0005Q_{\rm e}^{-1} =0.0005, ν ≈ 1.42. Analysis of the attenuation factor (Q c) for different values of the geometrical spreading parameter (ν) indicated that an increase of ν generally causes an increase in Q c, both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, Qc = (78±23)f(1.17±0.14)Q_{\rm c} =(78\pm 23)f^{(1.17\pm 0.14)} (in the deepest part of the basin), than in the basement, Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)} (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.  相似文献   

2.
During 2007–2008, three CO2 flux surveys were performed on El Chichón volcanic lake, Chiapas, Mexico, with an additional survey in April 2008 covering the entire crater floor (including the lake). The mean CO2 flux calculated by sequential Gaussian simulation from the lake was 1,190 (March 2007), 730 (December 2007) and 1,134 g m−2 day−1 (April 2008) with total emission rates of 164 ± 9.5 (March 2007), 59 ± 2.5 (December 2007) and 109 ± 6.6 t day−1 (April 2008). The mean CO2 flux estimated from the entire crater floor area was 1,102 g m−2 day−1 for April 2008 with a total emission rate of 144 ± 5.9 t day−1. Significant change in CO2 flux was not detected during the period of survey, and the mapping of the CO2 flux highlighted lineaments reflecting the main local and regional tectonic patterns. The 3He/4He ratio (as high as 8.1 R A) for gases in the El Chichón crater is generally higher than those observed at the neighbouring Transmexican Volcanic Belt and the Central American Volcanic Arc. The CO2/3He ratios for the high 3He/4He gases tend to have the MORB-like values (1.41 × 109), and the CO2/3He ratios for the lower 3He/4He gases fall within the range for the arc-type gases. The high 3He/4He ratios, the MORB-like CO2/3He ratios for the high 3He/4He gases and high proportion of MORB-CO2 (M = 25 ±15%) at El Chichón indicate a greater depth for the generation of magma when compared to typical arc volcanoes.  相似文献   

3.
We analyzed the local earthquakes waveform recorded on a broadband seismic network in the northwestern Himalayan Region to compute lapse time and frequency dependence of coda Q (Q c). The observed Q c values increase with increasing lapse time at all frequency bands. The increase in Q c values with lapse time is attributed to an increase in Q c with depth. This implies that attenuation decreases with increasing depth. The approximate radius of medium contributing to coda generation varies from 55 to 130 km. By comparing the Q c values with those from other regions of the world, we find that they are similar to those obtained from tectonically active regions. The estimated Q c values show a frequency-dependent relationship, Q c = Q 0 f n , where Q 0 is Q c at 1 Hz and n represents degree of frequency dependence. They represent the level of heterogeneity and tectonic activity in an area. Our results show that northwest Himalayas are highly heterogeneous and tectonically very active. Q 0 increases from 113 ± 7 to 243 ± 10 and n decreases from 1.01 ± 0.05 to 0.85 ± 0.03 when lapse time increases from 30 to 70 s. As larger time window sees the effect of deeper part of the Earth, it is concluded that Q 0 increases and n decreases with increasing depth; i.e., heterogeneity decreases with depth in the study area.  相似文献   

4.
A critical factor controlling changes in the acidity of coastal waters is the alkalinity of the water. Concentrations of alkalinity are determined by supply from rivers and by in situ processes such as biological production and denitrification. A 2-year study based on 15 cruises in Liverpool Bay followed the seasonal cycles of changing concentrations of total alkalinity (TA) and total dissolved inorganic carbon (DIC) in relation to changes caused by the annual cycle of biological production during the mixing of river water into the Bay. Consistent annual cycles in concentrations of nutrients, TA and DIC were observed in both years. At a salinity of 31.5, the locus of primary production during the spring bloom, concentrations of NO x decreased by 25 ± 4 μmol kg−1 and DIC by 106 ± 16 μmol kg−1. Observed changes in TA were consistent with the uptake of protons during primary biological production. Concentrations of TA increased by 33 ± 8 μmol kg−1 (2009) and 33 ± 15 μmol kg−1 (2010). The impact of changes in organic matter on the measured TA appears likely to be small in this area. Thomas et al. (2009) suggested that denitrification may enhance the CO2 uptake of the North Sea by 25%, in contrast we find that although denitrification is a significant process in itself, it does not increase concentrations of TA relative to those of DIC and so does not increase buffer capacity and potential uptake of CO2 into shelf seawaters. For Liverpool Bay historical data suggest that higher concentrations of TA during periods of low flow are likely to contribute in part to the observed change in TA between winter and summer but the appropriate pattern cannot be identified in recent low-frequency river data. On a wider scale, data for the rivers Mersey, Rhine, Elbe and Weser show that patterns of seasonal change in concentrations of TA in river inputs differ between river systems.  相似文献   

5.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

6.
Forward-Looking Infrared (FLIR) nighttime thermal images were used to extract the thermal and morphological properties for the surface of a blocky-to-rubbley lava mass active within the summit crater of the Caliente vent at Santiaguito lava dome (Guatemala). Thermally the crater was characterized by three concentric regions: a hot outer annulus of loose fine material at 150–400°C, an inner cold annulus of blocky lava at 40–80°C, and a warm central core at 100–200°C comprising younger, hotter lava. Intermittent explosions resulted in thermal renewal of some surfaces, mostly across the outer annulus where loose, fine, fill material was ejected to expose hotter, underlying, material. Surface heat flux densities (radiative + free convection) were dominated by losses from the outer annulus (0.3–1.5 × 104  s−1m−2), followed by the hot central core (0.1–0.4 × 104 J s−1m−2) and cold annulus (0.04–0.1 × 104 J s−1m−2). Overall surface power output was also dominated by the outer annulus region (31–176 MJ s−1), but the cold annulus contributed equal power (2.41–7.07 MJ s−1) as the hot central core (2.68–6.92 MJ s−1) due to its greater area. Cooled surfaces (i.e. the upper thermal boundary layer separating surface temperatures from underlying material at magmatic temperatures) across the central core and cold annulus had estimated thicknesses, based on simple conductive model, of 0.3–2.2 and 1.5–4.3 m. The stability of the thermal structure through time and between explosions indicates that it is linked to a deeper structural control likely comprising a central massive plug, feeding lava flow from the SW rim of the crater, surrounded by an arcuate, marginal fracture zone through which heat and mass can preferentially flow.  相似文献   

7.
Decompression experiments of a crystal-free rhyolitic liquid with ≈ 6.6 wt. % H2O were carried out at a pressure range from 250 MPa to 30–75 MPa in order to characterize effects of magma ascent rate and temperature on bubble nucleation kinetics, especially on the bubble number density (BND, the number of bubbles produced per unit volume of liquid). A first series of experiments at 800°C and fast decompression rates (10–90 MPa/s) produced huge BNDs (≈ 2 × 1014 m−3 at 10 MPa/s ; ≈ 2 × 1015 m−3 at 90 MPa/s), comparable to those in natural silicic pumices from Plinian eruptions (1015–1016 m−3). A second series of experiments at 700°C and 1 MPa/s produced BNDs (≈ 9×1012 m−3) close to those observed at 800°C and 1 MPa/s (≈ 6 × 1012 m−3), showing that temperature has an insignificant effect on BNDs at a given decompression rate. Our study strengthens the theory that the BNDs are good markers of the decompression rate of magmas in volcanic conduits, irrespective of temperature. Huge number densities of small bubbles in natural silicic pumices from Plinian eruptions imply that a major nucleation event occurs just below the fragmentation level, at which the decompression rate of ascending magmas is a maximum (≥ 1 MPa/s).  相似文献   

8.
This study combined water- and sediment flux measurements with mass balances of dissolved gas and inorganic matter to determine the importance of pelagic and benthic processes for whole-system metabolism in a eutrophic fluvial lake. Mass balances of dissolved O2, inorganic carbon (DIC), nitrogen (DIN), phosphorous (SRP), particulate N (PN) and P (PP) and Chl a were calculated at a nearly monthly frequency by means of repeated sampling at the lake inlet and outlet. Simultaneously, benthic fluxes of gas and nutrients, including denitrification rates, and the biomass of the dominant pleustophyte (Trapa natans) were measured, and fluxes of O2 and CO2 across the water–atmosphere interface were estimated from diel changes in outlet concentrations. On an annual scale, Middle Lake exhibited CO2 supersaturation, averaging 313% (range 86–562%), but was autotrophic with a net O2 production (6.35 ± 2.05 mol m−2 y−1), DIC consumption (−31.18 ± 18.77 mol m−2 y−1) and net export of Chl a downstream (8.38 ± 0.95 mol C m−2 y−1). Phytoplankton was the main driver of Middle Lake metabolism, with a net primary production estimated at 33.24 mol O2 m−2 y−1, corresponding to a sequestration of 4.18 and 0.26 mol m−2 y−1 of N and P, respectively. At peak biomass, T. natans covered about 18% of Middle Lake’s surface and fixed 2.46, 0.17 and 0.02 mol m−2 of C, N and P, respectively. Surficial sediments were a sink for O2 (−14.47 ± 0.65 mol O2 m−2 y−1) and a source of DIC and NH4 + (18.84 ± 2.80 mol DIC m−2 y−1 and 0.83 ± 0.16 mol NH4 + m−2 y−1), and dissipated nitrate via denitrification (1.44 ± 0.11 mol NO3  m−2 y−1). Overall, nutrient uptake by primary producers and regeneration from sediments were a minor fraction of external loads. This work suggests that the creation of fluvial lakes can produce net autotrophic systems, with elevated rates of phytoplanktonic primary production, largely sustained by allochtonous nutrient inputs. These hypereutrophic aquatic bodies are net C sinks, although they simultaneously release CO2 to the atmosphere.  相似文献   

9.
The characteristic of seismic coda wave attenuation in Yunnan area in 7 frequency-bands range from 1 Hz to 20 Hz was estimated by using the local earthquake's waveform data recorded from 22 Yunnan digital seismic stations.Coda attenuation Q-c1 of each station was firstly calculated by single scattering method. Then, mean free path Le and seismic albedo Bo of each station were calculated, and scattering attenuation Q-1s and intrinsic attenuation Q-1i were separated from total attenuation Q-1t by multiple lapse time window analysis based on the multiple scattering model in uniform random isotropic scattering medium. The attenuating characteristics in Yunnan show that most value of Le are in 10~30 km, with maximal within 2~6 Hz;Bo are about 0.5 at 1~2 Hz, but less than 0.5at other frequency-bands, which means Q-1i is comparable with Q-1s at 1~2 Hz, and after 1~2 Hz, Q-1i is greater than Q-1s and dominates the attenuation process. Q-1c is close to Q-1i at other frequency bands except 1~2 Hz.Results show that Q-1 especially Qs-1 varies spatially, Q-1 in eastern Yunnan zone is a bit higher than in northwestern Yunnan zone;northwestern Yunnan zone higher than southwestern Yunnan zone. Comparing with other results in global, Qs-1 in Yunnan is lower than the global average value among these results, Q-1i is higher than the global average value, and Q-1t lies the middle among these results.  相似文献   

10.
Forward Looking Infrared Radiometer (FLIR) cameras offer a unique view of explosive volcanism by providing an image of calibrated temperatures. In this study, 344 eruptive events at Stromboli volcano, Italy, were imaged in 2001–2004 with a FLIR camera operating at up to 30 Hz. The FLIR was effective at revealing both ash plumes and coarse ballistic scoria, and a wide range of eruption styles was recorded. Eruptions at Stromboli can generally be classified into two groups: Type 1 eruptions, which are dominated by coarse ballistic particles, and Type 2 eruptions, which consist of an optically-thick, ash-rich plume, with (Type 2a) or without (Type 2b) large numbers of ballistic particles. Furthermore, Type 2a plumes exhibited gas thrust velocities (>15 m s−1) while Type 2b plumes were limited to buoyant velocities (<15 m s−1) above the crater rim. A given vent would normally maintain a particular gross eruption style (Type 1 vs. 2) for days to weeks, indicating stability of the uppermost conduit on these timescales. Velocities at the crater rim had a range of 3–101 m s−1, with an overall mean value of 24 m s−1. Mean crater rim velocities by eruption style were: Type 1 = 34 m s−1, Type 2a = 31 m s−1, Type 2b = 7 m s−1. Eruption durations had a range of 6–41 s, with a mean of 15 s, similar among eruption styles. The ash in Type 2 eruptions originates from either backfilled material (crater wall slumping or ejecta rollback) or rheological changes in the uppermost magma column. Type 2a and 2b behaviors are shown to be a function of the overpressure of the bursting slug. In general, our imaging data support a broadening of the current paradigm for strombolian behavior, incorporating an uppermost conduit that can be more variable than is commonly considered.  相似文献   

11.
The local earthquake waveforms recorded on broadband seismograph network of Institute of Seismological Research in Gujarat, India have been analyzed to understand the attenuation of high frequency (2–25 Hz) P and S waves in the region. The frequency dependent relationships for quality factors for P (Q P) and S (Q S) waves have been obtained using the spectral ratio method for three regions namely, Kachchh, Saurashtra and Mainland Gujarat. The earthquakes recorded at nine stations of Kachchh, five stations of Saurashtra and one station in mainland Gujarat have been used for this analysis. The estimated relations for average Q P and Q S are: Q P = (105 ± 2) f 0.82 ± 0.01, Q S = (74 ± 2) f 1.06 ± 0.01 for Kachchh region; Q P = (148 ± 2) f 0.92 ± 0.01, Q S = (149 ± 14) f 1.43 ± 0.05 for Saurashtra region and Q P = (163 ± 7) f 0.77 ± 0.03, Q S = (118 ± 34) f 0.65 ± 0.14 for mainland Gujarat region. The low Q (<200) and high exponent of f (>0.5) as obtained from present analysis indicate the predominant seismic activities in the region. The lowest Q values obtained for the Kachchh region implies that the area is relatively more attenuative and heterogeneous than other two regions. A comparison between Q S estimated in this study and coda Q (Qc) previously reported by others for Kachchh region shows that Q C > Q S for the frequency range of interest showing the enrichment of coda waves and the importance of scattering attenuation to the attenuation of S waves in the Kachchh region infested with faults and fractures. The Q S/Q P ratio is found to be less than 1 for Kachchh and Mainland Gujarat regions and close to unity for Saurashtra region. This reflects the difference in the geological composition of rocks in the regions. The frequency dependent relations developed in this study could be used for the estimation of earthquake source parameters as well as for simulating the strong earthquake ground motions in the region.  相似文献   

12.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

13.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

14.
The seismic microzonation of the Bengal Basin, Haldia region, India is carried out using the Analytical Hierarchy Process (AHP) on the Geographic Information System (GIS). Three themes are used for the seismic microzonation, namely Peak Ground Acceleration (PGA), predominant frequency and elevation map. An analysis of the maximum magnitude (m max) and the b value is carried out after preparing the earthquake catalogue from various sources. On the basis of the tectonic set up and seismicity of the region, five seismic zones are delineated which can be a threat to Haldia. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ) and Zone 5: Shield Zone (SZ). The m max for Zones 1, 2, 3, 4 and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. The PGA value is computed for Haldia following the attenuation relationship taking the m max of each source zone. The expected PGA at Haldia varies from 0.09–0.19 g. The predominant frequency of Haldia is also calculated using the H/V ratio with a frequency ranging from 0.1–3.0 Hz. The elevation map of Haldia is also generated using the Shuttle Radar Topography Mission (STRM) data. A first-order seismic microzonation map of Haldia is prepared in which four zones of hazard have been broadly classified for Haldia as very high seismic hazard zone, high seismic hazard zone, moderate seismic hazard zone and less seismic hazard zone. The very high seismic hazard zone is observed along the southern part of Haldia where there are major industrial and port facilities. The PGA for the four hazard zones are: 0.09–0.13 g for low hazard zone, > 0.13–0.15 g for moderate hazard zone, > 0.15–0.16 g for high hazard zone and > 0.16–0.19 g for very high hazard zone.  相似文献   

15.
Data collected at Somma-Vesuvius during the 1998–1999 radon surveys have been revisited and reinterpreted in light of recent geophysical and geochemical information. The duration of selected radon anomalies, together with the decay properties of radon, have been used to estimate the permeability and porosity of rocks of the deep hydrothermal system. The current local cyclic seismicity is explained by means of a double convective-cell model. Convective cells are separated by a low-permeability horizon located at about 2–2.5 km below sea level. Fluids convecting within the upper cells show temperatures ranging 300–350°C. Rock permeabilities in this sector are estimated on the order of 10−12 m2, for porosities (ϕ) of about 10−5 typical of a brittle environment where fluid velocities may reach ∼800 m/day. Fluid temperatures within the lower cells may be as high as 400–450°C, consistent with supercritical regimes. The hydrodynamic parameters for these cells are lower, with permeability k ∼ 10−15 m2, and porosity ranging from 10−6 to 10−7. Here, fluid motion toward the surface is controlled by the fracture network within a porous medium approaching brittle–ductile behaviour, and fluid velocities may reach ∼1,800 m/day. The low-permeability horizon is a layer where upper and lower convecting cells converge. In this region, fluids (convecting both at upper and lower levels) percolate through the wallrock and release their brines. Due to self-sealing processes, permeability within this horizon reaches critical values to keep the fluid pressure near lithostatic pressure (for k ∼ 10−18 m2). Deep fluid pressure buildups precede the onset of hydrothermally induced earthquakes. Permeability distribution and rock strength do not exclude that the next eruption at Somma-Vesuvius could be preceded by a seismic crisis, eventually leading to a precursory phreatic explosion. The coupling of these mechanisms has the potential of inducing pervasive failure within rocks of the hydrothermal shell, and may be a prelude to a magmatic eruption. It is finally emphasised that the integrated analysis of seismic and geochemical data, including radon emissions, could be successfully used in testing temperature distributions and variations of porosity and permeability in active geothermal reservoirs.  相似文献   

16.
We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f 0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.  相似文献   

17.
The data of short-period seismograms had been collected widely in the mainland area of China not including Xinjiang and Tibet. The physical quantities of Lg wave are determined respectively in the five subregions. The group velocities of priminary arrival and maximum amplitude of Lg wave are equal to 3.54±0.02 km/s and 3.30±0.05 km/s, respectively. The periods of Lg waves are between 0.2s to 1.2s, averaging 0.7s. The γ-values of Lg waves in the five subregions are equal to 0.0034±0.0001 km−1 for East, 0.0031±0.0004 km−1 for Southwest, 0.0027±0.0004 km−1 for Northeast, 0.0022±0.0001 km−1 for South, and 0.0021±0.0002 km−1 for Northwest subreqion, respectively. The average γ-value for the five subregions, γ=0.0027±0.0006 km−1. The relations among the amplitude ratioH/Z, the station correctionD z andD h of amplitudes, and among them and station site condition are discussed. The subregional magnitude calibration functions ofm Lg had been established according to each regional γ-value. From these, the unified magnitude calibration function of Chinese mainland not including Xinjiang and Tibet was given by
  相似文献   

18.
The intrinsic dissipation and scattering attenuation in southwestern (SW) Anatolia, which is a tectonically active region, is studied using the coda waves. First the coda quality factor (Qc) assuming single scattering is estimated from the slope of the coda-wave amplitude decay. Then the Multiple Lapse Time Window (MLTW) analysis is performed with a uniform earth model. Three non-overlapping temporal data windows are used to calculate the scattered seismic energy densities against the source-receiver distances, which, in turn, are used to calculate separate estimates of the intrinsic and scattering factors. In order to explore the frequency dependency, the observed seismograms are band pass-filtered at the center frequencies of 0.75, 1.5, 3.0, 6.0 and 12.0. The scattering attenuation (Qs−1) is found lower than the intrinsic attenuation (Qi−1) at all frequencies except at 0.75 Hz where the opposite is observed. Overall the intrinsic attenuation dominates over the scattering attenuation in the SW Anatolia region. The integrated energy curves obtained for the first energy window (i.e., 0–15 s) are somewhat irregular with distance while the second (i.e., 15–30 s) and third (i.e., 30–45 s) data windows exhibit more regular change with distance at most frequencies. The seismic albedo B0 is determined as 0.61 at 0.75 Hz and 0.34 at 12.0 Hz while the total attenuation factor denoted by Le−1 changes in the range 0.034–0.017. For the source-station range 20–180 km considered the scattering attenuation is found strongly frequency dependent given by the power law Qs−1 = 0.010*f−1.508. The same relations for Qi−1, Qt−1 (total), Qc−1 and (expected) hold as Qi−1 = 0.0090*f−1.17, Qt−1 = 0.019*f−1.31, Qc−1 = 0.008*f−0.84 and respectively. Compared to the other attenuation factors Qc−1 and are less dependent on the frequency.  相似文献   

19.
20.
The attenuation factor QP at the top of the inner core is evaluated by using the amplitude spectral ratio of PKPdf and PKPbc phases observed at African stations (BGCA mostly), from strong deep earthquakes in the Pacific Ocean area. The maximum depth of penetration of the PKPdf phase into the inner core (IC) is roughly 377 km, and the sampled region of IC is centered beneath the Southern Indian Ocean. The derived mean value of QP is 249 ± 31 (95% confidence level) in the frequency range 0.2–2 Hz, where no frequency dependence of attenuation has been reliably observed. By using Student’s t-test, we show that the value is statistically significantly different (with a probability greater than 95%) from other mean values of Q derived by using the same method, for both the western (180 °W to 40 °E) and eastern (40 °E to 180 °E) hemispheres of the IC. The decrease of Q with the radius of the turning point (denoted by rTP), according to QP = 840 − 0.62 rTP, has a moderate statistical support (the R-squared value is 38%). A slightly increase of Q as a function of the angle of the PKPdf path within the inner core with respect to the Earth’s spin axis is observed, in agreement with various investigations performed in the time domain. However, the value of the anisotropy, if any, is suggested to be around 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号