首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helong City is located in the northeastern Changbai Mountain with a poor geological environment, there often occur debris flows, collapses and landslides; especially debris flows restrict the local economic development. Based on fractal theory and the surveying data of 34 debris flows, the authors studied fractal feature of debris flow gully and its various situations of fractal dimensions in different observation scales. The nonlinear relation reveals the development of non-uniformity and self similarity of debris flow gully  相似文献   

2.
The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow length, gully gradient, drainage area and form factor of the debris flows were determined by spatial analysis using a Geographic Information System (GIS) based on the data derived from field investigation, aerial photographs, and topographical maps. According to such determined geomorphic parameters, the threshold conditions and empirical equations, such as the relationship between the gully gradient and drainage area and that between gully length and drainage area and topographic parameter, are presented and used to distinguish the geomorphic characteristics between the channelized and hillslope debris flows.  相似文献   

3.
《山地科学学报》2020,17(1):156-172
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.  相似文献   

4.
Zhatai gully is a typical debris flow channel in Butuo county of Sichuan province, southwestern China. The geomorphologic features are analyzed and the physical-dynamic characteristics are discussed on the basis of field investigation and laboratory tests. Geomorphologic analysis indicates that Zhatai-gully drainage in relation to debris flow can be divided into source area, transport area, and deposition area. The source area has a steep slope and has very limited vegetation cover, which favors runoff, allowing loose solid materials to be mobilized easily and rapidly. In the transport area, there are many small landslides, lateral lobes, and loose materials distributed on both banks. These landslides are active and constantly providing abundant source of soils for the debris flows. In the deposition area, three old debris-flow deposits of different ages can be observed. The dynamic calculation shows that within the recurrence intervals of 50 and 100 years, debris flow discharges are 155.77m3/s and 1y8.19m3/s and deposition volumes are 16.39 x 104 m3 and 18.14 x 104 m3, respectively. The depositional fan of an old debris flow in the outlet of the gully can be subdivided into six layers. There are three debris flow deposits on left and two on the right side of the gully. Grain-size tests of sediments from the soil, gulley bed deposits, and the fresh and old debris flow deposits showed that high amounts of clay and fine gravel were derived from the soil in the source area whereas much of the gravel fraction were sourced from the gully bed deposits. Comprehensive analysis indicates that Zhatai gully is viscous debris-flow gully with moderate to high frequency and moderate to large magnitude debris flows. The risk of a debris flow disaster in Zhatai-gully is moderate and poses a potential threat to the planned hydroelectric dam. Appropriate engineering measures are suggested in the construction and protection of the planned hydroelectric station.  相似文献   

5.
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.  相似文献   

6.
牛眠沟流域泥石流形成条件、发展趋势及其防治探讨   总被引:1,自引:0,他引:1  
汶川地震使牛眠沟流域变成了一个多泥石流灾害的区域,到目前为止,已经发生7次大规模泥石流灾害。经研究,该流域诱发泥石流灾害的3个基本条件非常发育,而目前正处于发展阶段,在震后5~10年内的雨季,极易发生危害性较大、冲击力较强的大规模降雨型泥石流。如果考虑直接利用主沟内沉积的泥石流堆积物,在主沟堆积区的中上游左右两侧修建约为沟宽一半的交替式拦挡土石坝、在中下游修建与沟宽大致相等的拦挡土石坝及在相邻两坝间修建与沟向相对且具有一定坡度斜坡的土木防治工程,可实现消能与耗能双重目的。  相似文献   

7.
In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m~3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.  相似文献   

8.
The Longchi area with the city of Dujiangyan, in the Sichuan province of China, is composed of Permian stone and diorites and Triassic sandstones and mudstones intercalated with slates. An abundance of loose co-seismic materials were present on the slopes after the May 12, 2008 Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. A total of 48 debris flows, all triggered by heavy rainfall on 13th August 20l0, are described in this paper. Field investigation, supported by remote sensing image interpretation, was conducted to interpret the co-seismic landslides in the debris flow gullies. Specific characteristics of the study area such as slope, aspect, elevation, channel gradient, lithology, and gully density were selected for the evaluation of debris flow susceptibility. A score was given to all the debris flow gullies based on the probability of debris flow occurrence for the selected factors. In order to get the contribution of the different factors, principal component analyses were applied. A comprehensive score was obtained for the 48 debris flow gullies which enabled us to make a susceptibility map for debris flows with three classes. Twenty-two gullies have a high susceptibility, twenty gullies show a moderate susceptibility and six gullies have a low susceptibility for debris flows.  相似文献   

9.
The Wenchuan earthquake caused numerous landslides and collapses that provide abundant unconsolidated material for future mobilization as debris flows.Debris flows will be very active and cause considerable damage for some time in the affected area.Because of environmental changes related to the earthquake,many potentially dangerous debris flow gullies have yet to be identified.This paper selects the upper Min River from Yinxiu to Wenchuan as the study area,interprets the unconsolidated deposits,and discusses their relationship to distance from the fault.Then,applying that information and the values of other factors relating to debris flow occurrence,the locations of potential debris flows are analyzed by multi-factor comprehensive identification and rapid identification.The multi-factor comprehensive identification employs fuzzy matter-element extension theory.The volume of unconsolidated material in the study area is about 3.28 × 108 m3.According to the analysis by multi-factor comprehensive identification,47 gullies have a high probability for potential debris flow,8 gullies have a moderate probability,and 1 gully has a low probability.  相似文献   

10.
Debris flows consist of grains of various sizes ranging from 10~(-6) m ~1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution. The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a material-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.  相似文献   

11.
Debris flows are among the most common geological disasters in China,and have been particularly frequent in Sichuan Province since the Wenchuan earthquake on 12 May 2008.The construction of debris flow drainage channels is a countermeasure used to distribute debris flow fans,and these channels play a critical role in the mitigation and prevention of damage resulting from debris flows.Under field conditions,the useful life of drainage channels can be greatly shortened as a result of strong abrasions to the drainage structure caused by the debris flow.Field investigations have shown that the types of damage to drainage channels include(a) erosion caused by hyper-concentrated silt flow,(b) impact fractures and foundation scour at the groundsills of the drainage channel,(c) destruction of the drainage channel outlet,and(d) destruction of the drainage channel caused by debris flow abrasion.In addition,based on the destruction of the drainage channel during the debris flow drainage process,a new type of drainage channel with energy dissipation components was proposed and applied in a steep,narrow gully for debris flow mitigation.Moreover,design and engineering repair recommendations for drainage channels are provided as a reference for repairing the damage to the channel.The results can provide an important reference for the effective repair and optimal design of drainage channels.  相似文献   

12.
The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.  相似文献   

13.
Debris flows often occur in landslide deposits during heavy rainstorms. Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions. A physical model based on an infinitely long, uniform and void-rich sediment layer was applied to analyze the triggering of debris-flow introduced in landslide deposits. To determine the initiation condition for rainfall-induced debris flows, we conducted a surface water runoff and saturated-unsaturated seepage numerical program to model rainfall infiltration and runoff on a slope. This program was combined with physical modeling and stability analysis to make certain the initiation condition for rainfall-introduced debris flows. Taking the landslide deposits at Wenjiagou gully as an example, the initiation conditions for debris flow were computed. The results show that increase height of surface-water runoff and the decrease of saturated sediment shear strength of are the main reasons for triggering debris-flows under heavy rainfall conditions. The debris-flow triggering is affected by the depth of surface-water runoff, the slope saturation and shear strength of the sediment.  相似文献   

14.
栖霞市生木树泥石流隐患点为烟台市471处地质灾害隐患点其中1处,曾于1979年7月因暴雨引发泥石流灾害,给当地村民造成严重经济损失。以该泥石流沟流域作为研究区,并以区内泥石流发育的自然环境、基本特征及形成泥石流的地质条件、物源条件和水源条件等勘察成果为基础,综合分析区内泥石流发育特征、类型、形成机理、引发因素,并选取相关参数对泥石流基本特征值进行计算,为同类型泥石流的防治提供科学依据。综合研究确定区内泥石流易发程度为轻度易发,现阶段泥石流沟发展阶段为发展期,泥石流灾害趋于相对稳定,但一旦遭遇暴雨至特大暴雨,可能会再次引发泥石流地质灾害。  相似文献   

15.
On 23 July 2009, a catastrophic debris flows were triggered by heavy rainfall in Xiangshui gully, Kangding county, southwestern China. This debris flow originating shortly after a rainstorm with an intensity of 28 mm per hour transported a total volume of more than 480×103 m3 debris, depositing the poorly sorted sediment including boulders up to 2-3 m in diameter both onto an existing debris fans and into the river. Our primary objective for this study was to analyze the characteristics of the triggering ra...  相似文献   

16.
The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.  相似文献   

17.
Mine waste debris flows continue to occur in China, and the disaster prevention and mitigation of these flows faces severe challenges since the mechanisms determining erosion and transport of mine waste along gullies are not yet fully understood. The erosion and delivery process of mine waste heaps was reproduced through flume experiments with the method based on field survey data of the Daxicha mine waste debris flow gully in the Xiaoqinling gold mining area. The results showed that the erosion and movement of mine wastes could be divided into three modes: minimal sediment movement, sediment sorting and delivery, and a large amount of sediment transfer. Moreover, there was an obvious amplification effect on peak discharge along with the formation and failure of temporary landslide dams during the erosion process. The correlation between the coefficient of peak discharge amplification and three dimensionless influencing factors, flume gradient, dimensionless volume, and dimensionless particle size, were comprehensively analyzed. An empirical formula for the coefficient of peak discharge amplification was proposed and verified based on 16 sets of experimental data. These preliminary results can provide a scientific reference for future research on disaster prevention and mitigation of mine waste debris flows.  相似文献   

18.
Due to the special condition of provenance and disaster environment after "5·12" Earthquake, the probability and conditions of the occurrence of gully debris flow change greatly after the event, which make it difficult to prevent disaster effectively. In this study the hydrological model of ground water table in loose sediment is established. According to infinite slope theory, the safety factor of deposits is defined as the ratio of resistance force to driving force. The starting condition of post-earthquake gully debris flow is clearly studied by analyzing the effects of rainfall intensity, seismic strength, slope gradient and mechanical properties on the balance of accumulation body. Then the formulas of rainfall and aftershock threshold for starting of gully debris flow are proposed, and an example is given to illustrate the effect of rainfall, aftershocks and their coupling action on a debris flow. The result shows the critical rainfall intensity decreases as the lateral seismic acceleration and channel gradient increases, while the critical intensity linearly increases as the friction angle increases.  相似文献   

19.
A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.  相似文献   

20.
Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.However, false message often arises from the simple mechanics of alarms under the ambient noise interference.To improve the accuracy of infrasound monitoring for early-warning against debris flows, it is necessary to analyze the monitor information to identify in them the infrasonic signals characteristic of debris flows.Therefore, a large amount of debris flow infrasound and ambient noises have been collected from different sources for analysis to sum up their frequency spectra, sound pressures, waveforms, time duration and other correlated characteristics so as to specify the key characteristic parameters for different sound sources in completing the development of the recognition system of debris flow infrasonic signals for identifying their possible existence in the monitor signals.The recognition performance of the system has been verified by simulating tests and long-term in-situ monitoring of debris flows in Jiangjia Gully,Dongchuan, China to be of high accuracy and applicability.The recognition system can provide the local government and residents with accurate precautionary information about debris flows in preparation for disaster mitigation and minimizing the loss of life and property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号