首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Making a distinction between partial melting and subsolidus segregation in amphibolite facies migmatites is difficult. The only significant melting reactions at lowpressures, either vapour saturated or muscovite dehydration melting, do not produce melanocratic peritectic phases. If protoliths are Si-rich and K-poor, then peritectic sillimanite and K-feldspar will form in scarce amounts, and may be lost by retrograde rehydration. The Roded migmatites of southern Israel (northernmost Arabian Nubian Shield) formed at P = 4.5 ± 1 kbar and T ≤ 700 °C and include Si-rich, K-poor paragneissic paleosome and trondhjemitic leucosomes. The lack of K-feldspar in leucosomes was taken as evidence for the non-anatectic origin of the Roded migmatites (Gutkin and Eyal, Isr J Earth Sci 47:117, 1998). It is shown here that although the Roded migmatites experienced significant post-peak deformation and recrystallization, microstructural evidence for partial melting is retained. Based on these microstructures, coupled with pseudosection modelling, indicators of anatexis in retrograded migmatites are established. Phase diagram modelling of neosomes shows the onset of muscovite dehydration melting at 4.5 kbar and 660 °C, forming peritectic sillimanite and K-feldspar. Adjacent non-melted paleosomes lack muscovite and would thus not melt by this reaction. Vapour saturation was not attained, as it would have formed cordierite that does not exist. Furthermore, vapour saturation would not allow peritectic K-feldspar to form, however K-feldspar is ubiquitous in melanosomes. Direct petrographic evidence for anatexis is rare and includes euhedral plagioclase phenocrysts in leucosomes and quartz-filled embayments in corroded plagioclase at leucosome-melanosome interfaces. In deformed and recrystallized rocks muscovite dehydration melting is inferred by: (1) lenticular K-feldspar enclosed by biotite in melanosomes, (2) abundant myrmekite in leucosomes, (3) muscovite–quartz symplectites after sillimanite in melanosomes and associated with myrmekite in leucosomes. While peritectic K-feldspar formed in melanosomes by muscovite dehydration melting reaction, K-feldspar crystallizing from granitic melt in adjacent leucosome was myrmekitized. Excess potassium was used in rehydration of sillimanite to muscovite.  相似文献   

2.
Migmatitic orthogneisses in the Muskoka domain, southwesternGrenville Province, Ontario, formed during the Ottawan stage(c. 1080–1050 Ma) of the Grenvillian orogeny. Stromaticmigmatites are volumetrically dominant, comprising granodioriticgneisses with 2–5 cm thick granitic leucosomes, locallyrimmed by thin melanosomes, that constitute 20–30 vol.%, and locally 40–50 vol. %, of the outcrops. Patch migmatitesin dioritic gneisses form large (>10 m) pinch-and-swell structureswithin the stromatic migmatites, and consist of decimetre-scale,irregular patches of granitic leucosome, surrounded by medium-grainedhornblende–plagioclase melanosomes interpreted as restite.The patches connect to larger networks of zoned pegmatite dykes.Petrographic and geochemical evidence suggests that the patchleucosomes formed by 20–40% fluid-present, equilibriummelting of the dioritic gneiss, followed by feldspar-dominatedcrystallization. The dyke networks may have resulted from hydraulicfracturing, probably when the melts reached water saturationduring crystallization. Field and geochemical data from thestromatic migmatites suggest a similar petrogenesis to the patchmigmatites, but with significant additions of externally derivedmelts, indicating that they acted as conduits for melts derivedfrom deeper structural levels within the orogen. We hypothesizethat the Muskoka domain represents a transfer zone for meltsmigrating to higher structural levels during Grenvillian deformation. KEY WORDS: migmatite geochemistry; partial melting; melt crystallization; melt transport; Grenville orogen  相似文献   

3.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

4.
Metasediments of the Rantasalmi-Sulkava area (Finland) showprogressive regional metamorphism with migmatization. The metasedimentsare represented by various types of metapsammites (plagioclase-rich,quartz-rich, and layers of granitic compositions—somerich in microcline and others in plagioclase) and metapelites(dark and light layers). The migmatites of this area are of stromatic type. They consistof leucosomes, mesosomes, and light-coloured plagioclase-richlayers which do not fit the definition of leucosome. Melanosomes,which usually separate leucosomes and mesosomes in stromaticmigmatites, are almost absent. The leucosomes are of three types: (i) quartz-rich; (ii) cordierite-rich;and (iii) granitic. The quartz-rich leucosomes formed firstat subsolidus temperatures through recrystallization. The graniticleucosomes are considered to have developed via partial melting.The cordierite-rich leucosomes are formed—like the graniticones—at supersolidus conditions, but the role of partialmelting is not clear. The mesosomes are the metamorphic portions of the migmatiteswhich are not transformed into leucosomes. They include metapsammiticlayers and light-coloured metapelitic layers, both rich in plagioclase. Besides mineral reactions resulting in new assemblages duringregional metamorphism, the main process changing the protolithsinto migmatites is the conversion of some of the protolith layersinto leucosomes, through (as we believe) an almost isochemicalpartial melting. The migmatites of the Rantasalmi-Sulkava area differ from othermigmatites investigated by the authors in having two differentgenetic types of leucosomes: one formed via partial meltingand the other through subsolidus recrystallization as mentionedabove. The process of migmatization is described and modelledin three steps. Reprint requests to W. Johannes  相似文献   

5.
Petrographic analysis is a useful, but underused tool to aid in distinguishing between subsolidus and anatetic-related textures in migmatites. This study focuses on assessing the relative contributions of these two processes in the development of migmatitic orthogneiss textures in the Velay Massif, French Massif Central. The results of this study show that subsolidus processes are more important in the development of migmatitic textures in the orthogneiss than anatectic leucosome development. Four textural stages are identified from the mylonitic non-anatectic orthogneiss, annealed, migmatitic orthogneiss to diatexite. The monomineralic K-feldspar and plagioclase–muscovite banding was transformed with increasing temperature to polymineralic plagioclase–quartz–muscovite and K-feldspar–quartz–muscovite layers by the wetting of feldspar boundaries during heterogeneous nucleation of quartz from a fluid phase at high surface energy triple points. A further increase of temperature led to the growth of K-feldspar probably related to production of small amounts of melt in plagioclase rich aggregates, controlled by muscovite abundance. Solid state annealing processes in conjunction with incipient anatexis resulted in the formation of apparent granitic-like textures in plagioclase dominated aggregates. By contrast, in K-feldspar dominated aggregates exclusively subsolidus processes prevail, leading to the development of coarse grained leucosome. With the onset of biotite dehydration melting the plagioclase-dominated aggregates are destroyed by the melt whereas the K-feldspar aggregates may be preserved.  相似文献   

6.
Migmatitic rocks developed in metagraywackes during the Variscan orogeny in the Aiguilles-Rouges Massif (western Alps). Partial melting took place 320 Ma ago in a 500 m-wide vertical shear zone. Three leucosome types have been recognised on the basis of size and morphology: (1) large leucosomes > 2 cm wide and > 40 cm long lacking mafic selvage, but containing cm-scale mafic enclaves; (2) same as 1 but with thick mafic selvage (melanosome); (3) small leucosomes < 2 cm and < 40 cm) with thin dark selvages (stromatic migmatites). Types 1 + 2 have mineralogical and chemical compositions in keeping with partial melting experiments. But Type 3 leucosomes have identical plagioclase composition (An19–28) to neighbouring mesosome, both in terms of major- and trace-elements. Moreover, whole-rock REE concentrations in Type 3 leucosomes are only slightly lower than those in the mesosomes, unlike predicted by partial melting experiments. The main chemical differences between all leucosome types can be related to the coupled effect of melt segregation and late chemical reequilibration.

Mineral assemblages and thermodynamic modelling on bulk-rock composition restrict partial melting to  650 °C at 400 MPa. The large volume of leucosome (20 vol.%) thus generated requires addition of 1 wt.% external water. Restriction of extensive migmatization to the shear zone, without melting of neighbouring metapelites, also points to external fluid circulation within the shear zone as the cause of melting.  相似文献   


7.
Abstract. A method for the quantitative analysis of the spatial relations of minerals is described. Dispersed distributions are formed by annealing and destroyed in post-tectonic migmatization. Aggregate distributions characterize solid-state differentiation, whereas leucosomes formed in systems of high fluid:rock ratio (in the examples studied, anatectic melts) show random distributions.
Quantitative textural analysis can be used to indicate whether migmatization was post-tectonic or earlier, though caution is necessary if post-migmatite cooling is slow or if there is some minor deformation. More importantly, it can be used to discriminate melt-present from melt-absent leucosomes; this is exemplified by a suite of metamorphic and anatectic migmatites from the Scottish Caledonides.
The textural evolution of anatexites with increasing melt percentage is traced. Initial feldspar porphyroblastesis occurs by Ostwald ripening via grain boundary melts; subsequently ophthalmites develop with fabrics and chemistry inherited from the palaeosome. At greater than 30% melt these inherited fabrics are wholly destroyed. Deformation prompts segregation into melanosome and leucosome; resultant leucosomes contain no inherited crystals. The scale of anatectic systems is fixed at the point at which segregation begins; ophthalmites provide evidence for melt and crystal transfer beyond original palaeosome boundaries. In contrast, metamorphic migmatites are necessarily small-scale systems because of diffusive constraints, and melanosomes are invariably produced.  相似文献   

8.
The grain‐ and outcrop‐scale distribution of melt has been mapped in anatectic rocks from regional and contact metamorphic environments and used to infer melt movement paths. At the grain scale, anatectic melt is pervasively distributed in the grain boundaries and in small pools; consequently, most melt is located parallel to the principal fabric in the rock, typically a foliation. Short, branched arrays of linked, melt‐bearing grain boundaries connect melt‐depleted parts of the matrix to diffuse zones of melt accumulation (protoleucosomes), where magmatic flow and alignment of euhedral crystals grown from the melt developed. The distribution of melt (leucosome) and residual rocks (normally melanocratic) in outcrop provides different, but complementary, information. The residual rocks show where the melt came from, and the leucosomes preserve some of the channels through which the melt moved, or sites where it pooled. Different stages of the melt segregation process are recorded in the leucosome–melanosome arrays. Regions where melting and segregation had just begun when crystallization occurred are characterized by short arrays of thin, branching leucosomes with little melanosome. A more advanced stage of melting and segregation is marked by the development of residual rocks around extensive, branched leucosome arrays, generally oriented along the foliation or melting layer. Places where melting had stopped, or slowed down, before crystallization began are marked by a high ratio of melanosome to leucosome; because most of the melt has drained away, very few leucosomes remain to mark the melt escape path — this is common in melt‐depleted granulite terranes. Many migmatites contain abundant leucosomes oriented parallel to the foliation; mostly, these represent places where foliation planes dilated and melt drained from the matrix via the branched grain boundary and larger branched melt channel (leucosome) arrays collected. Melt collected in the foliation planes was partially, or fully, expelled later, when discordant leucosomes formed. Leucosomes (or veins) oriented at high angles to the foliation/layering formed last and commonly lack melanocratic borders; hence they were not involved in draining the matrix of the melting layer. Discordant leucosomes represent the channels through which melt flowed out of the melting layer.  相似文献   

9.
Migmatite structures in the Central Gneiss Complex, Boca de Quadra, Alaska   总被引:3,自引:0,他引:3  
Abstract Migmatite structures in the Coast Plutonic-Metamorphic Complex are well exposed in the inlet of Boca de Quadra, southeast Alaska. Two types of anatectic migmatites are present. Patch migmatites formed by in situ melting and subsequent crystallization of melt. Diktyonitic migmatites comprise a discontinuous veined network of leucocratic material, in which leucosomes enclose boudins of host rock. The margins of these boudins show the development of both melanosomes and shear band fabrics.
Strain analysis of diktyonitic melanosomes indicates that these regions have undergone volume decreases of 20-27%. This volume decrease is attributed to melt extraction into the adjacent fracture-filling leucosomes. Thus, diktyonitic migmatites formed by shear-induced segregation of partial melt, whereas in patch migmatites the lack of shear stresses inhibited melt segregation. The variable structural style of anatectic migmatites in Boca de Quadra is not related to host-rock composition, but may be due to differences in the amount of differential stress during migmatization. These in turn may be controlled by host-rock strength and/or diachroneity of migmatization and deformation.
Determination of volume changes during migmatization using strain analysis is potentially capable of discriminating intrusive and anatectic migmatites and consequently of documenting melt segregation and subsequent migration across crustal levels.  相似文献   

10.
Isocon analysis of migmatization in the Front Range, Colorado, USA   总被引:2,自引:0,他引:2  
Isocon analysis has been applied to five sets of leucosome, mafic selvages and immediately adjacent mesosome in the migmatites from a 15-m outcrop in the Colorado Front Range. The results show: (i) mafic selvages formed from the adjacent mesosome by loss of felsic components and therefore the mesosomes are indeed palaeosomes or protoliths; (ii) the leucosomes did not form in a closed system from the palaeosome (in which case the material lost from the palaeosome during selvage formation would become the leucosome). The observed volumes and compositions of leucosomes require that the present leucosome must contain some material in addition to the felsic components lost from the selvages. The materials that must be added are leucotonalitic to granitic in composition, varying greatly in K/(Na + Ca) ratio. The trend in leucosome composition can be reproduced by assuming that a metasomatic exchange, KNa + Ca, modified originally leucotonalitic leucosomes to more K-rich compositions. These leucosomes most likely formed by injection of silicate melts accompanied, or followed, by metasomatism. The trend of leucosome compositions in this study reflects the general trend in the leucosome compositions which have been published from other areas, indicating that the proposed mechanism can be applicable to other regional migmatites.  相似文献   

11.
SAWYER  E. W. 《Journal of Petrology》1991,32(4):701-738
Migmatites are developed in Archaean metabasites south of theGrenville Front. Relative to equivalent greenschist facies metabasites,those hosting the migmatites have undergone some mobilizationof CaO, Na2O, and Sr, and, in the case of sheared metabasites,the introduction of K2O, Ba, Cs, and Rb, before migmatization.Three types of anatectic migmatite are recognized, based ontheir leucosome-melanosome relationships: (1) non-segregatedmigmatites in which new leucocratic and magic phases are intimatelymixed in patches up to 15 cm across, (2) segregated migmatitesin which the leucosomes are located in boudin necks and shearbands, and are separated from their associated mafic selvedgesby 5–100 cm, and (3) vein-type migmatites where discordantleucosomes lack mafic selvedges. The non-segregated and segregatedmigmatites have a local and essentially isochemical origin,whereas the vein-type represent injected melt. Leucosomes fromthe segregated and vein-type migmatites have similar tonaliticmajor oxide compositions, but they differ greatly in their trace-elementcharacteristics. The vein-type leucosomes are enriched in K2O, Ba, Cs, Rb, LREE,Th, Hf, Zr, and P2O5 relative to their metabasite hosts, andhave greater La/YbN ratios (27 compared with 0?6–17).These veins may have formed by between 5 and 25%equilibriumbatch partial melting of Archaean metabasalt, leaving garnet+ hornblende in the residuum. In contrast, leucosomes from the segregated migmatites are depletedin REE, Sc, V, Cr, Ni, Co, Ti, Th, Hf, Zr, Nb, and P2O5 relativeto their source rocks; the associated mafic selvedges are enrichedin these elements. The leucosomes and mafic selvedges both haveLa/YbN ratios that are similar to those of the source metabasitesirrespective of whether the source is LREE depleted or LREEenriched. The abundances of many trace elements in the leucosomesappear to be controlled by the degree of contamination withresiduum material. Zr concentrations in the leucosomes are between10 and 52% of the estimated equilibrium concentrations in felsicmelts at the temperature (750–775 ?C) of migmatization.A numerical simulation of disequilibrium melting using bothLREE-depleted and LREE-enriched sources yields model melts withtrace element abundances that match those of the natural leucosomes.Mafic selvedge compositions indicate that the segregated migmatitesrepresent a range of between 12 and 36% partial melting of theirhost metamatization. Based upon calculated dissolution times for zircon in wet melts,the melt and residuum were separated in less than 23a, otherwisemelts would have become saturated in Zr. Rapid melt extractionis thought to be driven by pressure gradients developed duringnon-coaxial deformation of the anisotropic palaeosome duringmigmatization. The common occurrence, based on published work, of disequilibriumcompositions in migmatite leucosomes implies that during mid-crustalmelting the melt-segregation rates are greater than the rateof chemical equilibration between melt and the residual solid.In contrast, at the higher temperatures of granite formation,the rate of chemical equilibration exceeds that of melt-segregationand equilibrium melt compositions are reached before segregationcan occur. On the basis of their trace element characteristics,the melt which forms segregated migmatites cannot be the sameas that which forms the vein-like migmatites, or granitoid plutons.  相似文献   

12.
Large garnet poikiloblasts hosted by leucosome in metapelitic gneiss from Broken Hill reflect complex mineral–melt relationships. The spatial relationship between the leucosomes and the garnet poikiloblasts implies that the growth of garnet was strongly linked to the production of melt. The apparent difficulty of garnet to nucleate a large number of grains during the prograde breakdown of coexisting biotite and sillimanite led to the spatial focussing of melting reactions around the few garnet nuclei that formed. Continued reaction of biotite and sillimanite required diffusion of elements from where minerals were reacting to sites of garnet growth. This diffusion was driven by chemical potential gradients between garnet‐bearing and garnet‐absent parts of the rock. As a consequence, melt and peritectic K‐feldspar also preferentially formed around the garnet. The diffusion of elements led to the chemical partitioning of the rock within an overall context in which equilibrium may have been approached. Thus, the garnet‐bearing leucosomes record in situ melt formation around garnet porphyroblasts rather than centimetre‐scale physical melt migration and segregation. The near complete preservation of the high‐grade assemblages in the mesosome and leucosome is consistent with substantial melt loss. Interconnected networks between garnet‐rich leucosomes provide the most likely pathway for melt migration. Decimetre‐scale, coarse‐grained, garnet‐poor leucosomes may represent areas of melt flux through a large‐scale melt transfer network.  相似文献   

13.
We provide data on the geochemical and isotopic consequences of nonmodal partial melting of a thick Jurassic pelite unit at mid-crustal levels that produced a migmatite complex in conjunction with the intrusion of part of the southern Sierra Nevada batholith at ca. 100 Ma. Field relations suggest that this pelitic migmatite formed and then abruptly solidified prior to substantial mobilization and escape of its melt products. Hence, this area yields insights into potential mid-crustal level contributions of crustal components into Cordilleran-type batholiths. Major and trace-element analyses in addition to field and petrographic data demonstrate that leucosomes are products of partial melting of the pelitic protolith host. Compared with the metapelites, leucosomes have higher Sr and lower Sm concentrations and lower Rb/Sr ratios. The initial 87Sr/86Sr ratios of leucosomes range from 0.7124 to 0.7247, similar to those of the metapelite protoliths (0.7125–0.7221). However, the leucosomes have a much wider range of initial εNd values, which range from −6.0 to −11.0, as compared to −8.7 to −11.3 for the metapelites. Sr and Nd isotopic compositions of the leucosomes, migmatites, and metapelites suggest disequilibrium partial melting of the metapelite protolith. Based on their Sr, Nd, and other trace-element characteristics, two groups of leucosomes have been identified. Group A leucosomes have relatively high Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (0.15<Rb/Sr<1.0), and initial εNd values. Group B leucosomes have relatively low Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (<0.15), and initial εNd values. The low Rb concentrations and Rb/Sr ratios of the group B leucosomes together suggest that partial melting was dominated by water-saturated or H2O-fluxed melting of quartz + feldspar assemblage with minor involvement of muscovite. Breakdown of quartz and plagioclase with minor contributions from muscovite resulted in low Rb/Sr ratios characterizing both group A and group B leucosomes. In contrast, group A leucosomes have greater contributions from K-feldspar, which is suggested by: (1) their relatively high K concentrations, (2) positive or slightly negative Eu anomalies, and (3) correlation of their Pb and Ba concentrations with K2O contents. It is also shown that accessory minerals have played a critical role in regulating the partitioning of key trace elements such as Sm, Nd, Nb, and V between melt products and residues during migmatization. The various degrees of parent/daughter fractionations in the Rb–Sr and Sm–Nd isotopic systems as a consequence of nonmodal crustal anatexis would render melt products with distinct isotopic signatures, which could profoundly influence the products of subsequent mixing events. This is not only important for geochemical patterns of intracrustal differentiation, but also a potentially important process in generating crustal-scale as well as individual pluton-scale isotopic heterogeneities.  相似文献   

14.
N. Marchildon  M. Brown   《Tectonophysics》2003,364(3-4):215-235
In this study, we present quantitative spatial information on the one- and two-dimensional distribution of inferred melt-bearing structures in anatectic supracrustal rocks of the Southern Brittany Migmatite Belt, south of the transcurrent South Armorican Shear Zone (SASZ); based on these data, we infer the mechanism of melt extraction from partially molten crust. Former melt-bearing structures include foliation-parallel leucosomes and cross-cutting granitic leucosomes that infill inter-boudin partitions and extensional shear surfaces, as well as discordant dykes of granite. Petrographic (i.e., mineralogical and microstructural) continuity of granite from structure to structure suggests that they once formed a continuous melt-bearing network. Measurements along one-dimensional line traverses perpendicular to layering of stromatic migmatite exposed in clean, sub-horizontal outcrop surfaces provide information about thickness and spacing distributions of foliation-parallel leucosomes. Most leucosome thicknesses fall in the range of 1–10 mm, with upper limits around 20–30 mm. The number of thicker layers decreases abruptly with increasing thickness, which is inconsistent with scale-invariance. This suggests that leucosome formation was controlled by short-range melt movement along grain boundaries to form melt-rich layers constrained by pre-existing compositional layering. Spacing distributions also are not scale-invariant; however, the large percentage of leucosomes (40–60%) in these line traverses suggests that spacing distributions may be controlled in part by impingement of leucosomes, making it difficult to derive genetic information from these data. Qualitative observation of inferred melt-bearing structures in mutually perpendicular two-dimensional exposures from the same outcrop reveals anisotropy of the leucosome network related to a well-developed sub-horizontal quartz–feldspar lineation reflecting stretching associated with transcurrent movement along the SASZ. Analysis of these two-dimensional distributions using the box-counting method corroborates the observed anisotropy, but indicates that leucosome morphology (and perhaps distribution) is not scale-invariant. The applicability of the box-counting method, or of fractal analysis, to understanding melt movement in migmatites is discussed in light of these results. Based on the anisotropy of melt-bearing structures, we infer that melt-movement in structures now represented by layer-parallel leucosomes was primarily sub-horizontal. These layers fed steeply dipping structures now represented by cross-cutting leucosomes, in particular those developed at inter-boudin partitions, and granite dykes. The formation and orientation of these steeply dipping structures was in part controlled by far-field stresses related to dextral displacement along the SASZ. Melt extraction is inferred to have occurred along these steeply dipping structures; extracted melt accumulated in plutons at higher crustal levels, such as the Quiberon, Sarzeau, and Guérande granites.  相似文献   

15.
The stromatic migmatites of Nelaug (Tvedestrand area, SouthernNorway) are investigated in detail. They show well developedlayers of leucosomes, mesosomes and melanosomes. It is establishedthat the mesosomes and leucosomes of these migmatites are differentfrom each other texturally, mineralogically, and chemically.Also combinations of leucosome plus adjacent melanosome portionsare chemically different from those of the mesosomes. Theseobservations do not agree with the findings of Mehnert (1971)and do not fit into his genetic model. The mesosome layers and the leucosome + melanosome combinationsare taken to represent the chemical compositions of the countryrock, a metagraywacke with relicts of primary rhythmic layering(Touret, 1965). The mineralogical composition of the layersvaries from granitic to tonalitic. Relict textures indicatethat the leucosome portions were initially occupied by layersof granitic composition relatively rich in K-feldspar, whereasthe mesosomes are the representatives of those metagraywackelayers which were relatively rich in plagioclase. An almostisochemical transformation of a paragneiss into the investigatedstromatic migmatite is established. Melting experiments performed at PH2O= 5 Kb yielded solidustemperatures of 640±7 °C for all layers. The Composition of plagioclases present in the different layersis explained by isochemical partial melting and in situ crystallization.The chemical, mineralogical, and textural findings support themodel of almost isochemical transformation already establishedfor the Arvika migmatites (Johannes & Gupta, 1982).  相似文献   

16.
Multi-stage Melting in the Lower Crust of the Serre (Southern Italy)   总被引:3,自引:1,他引:3  
The lower-crustal section exposed in the Serre, southern Italy,consists mainly of Al-rich metasediments, which underwent granulite-faciesmetamorphism, partial melting and melt extraction. The paperconsiders the formation of melts in metapelites and metagreywackes.Leucosomes and host rocks have been studied to investigate themelting process. Biotite-rich and biotite-free melanosomes withscarce felsic components are present; the biotite-rich typesare widespread in the upper part of the section and the twotypes may occur side by side in the lower part. Na-rich andK-rich leucosomes including residual phases are interspersedwithin the metasediments; on the whole they do not show geochemicalsignatures suggestive of magmatic fractionation. Leucotonalitictypes prevail among the sampled leucosomes, which generallyare rare earth element (REE) depleted with positive Eu anomalieswhereas the host rocks are REE enriched with overall negativeEu anomalies. Melanosomes and migmatites show restitic chemistries.The precursor metagreywackes underwent depletion in Na2O andenrichment in K2O. The precursor metapelites document generaldepletion in Na2O and they may be enriched or depleted in K2O.All the characteristics of the migmatites and of their componentsreflect a two-stage melting: (1) H2O-present melting, involvingmainly plagioclase, and (2) dehydration melting of micas. Allthe metasediments underwent H2O-present melting, forming mostlysodic melts which, owing to their removal from the source asfast as they formed, did not accumulate in such proportionsas to allow migration and mostly remained within the lower-crustalmetasediments; metapelites also underwent variable dehydrationmelting, depending on chemical features and physical conditions,forming larger volumes of mobile granitic melts, most of whichmigrated far from the source. Extractions of 57–66 vol.% of total melts (sodic + potassic) from the most residual metapeliticmelanosomes and of about 27–44 vol. % of potassic meltsfrom metapelitic migmatites have been calculated. Higher volumesof the extracted melts have been calculated for the metapelitesof the lower part of the section; the most depleted metagreywackesunderwent melt extraction of about 9–13 vol. %. The two-stagemelting occurred during the prograde metamorphism and continuedduring the isothermal decompression. KEY WORDS: Calabria; lower crust; multi-stage melting  相似文献   

17.
The Kelly's Mountain gneiss complex of Cape Breton Island, Nova Scotia, is a migmatitic paragneiss dominated by biotite- and cordierite-bearing assemblages. Metamorphic grade throughout the complex is in the upper amphibolite facies, with garnet absent and only retrograde muscovite present. In the high grade core of the complex the reaction biotite+andalusite+quartz=cordierite+K-feldspar+sillimanite+ilmenite+H2O is preserved. The pelitic migmatites contain cordierite- and K-feldspar-rich leucosomes and biotite-rich melanosomes. Minor clinopyroxene-bearing amphibolite in the complex does not show migmatitic textures. The migmatites are interpreted as in situ peraluminous partial melts on the basis of phase relations and textural criteria. Retrograde metamorphism under conditions of high fluid pressure locally produced muscovite after K-feldspar and muscovite+green biotite+chlorite after cordierite in paragneiss, and sphene after ilmenite in amphibolite. Peak metamorphic conditions of 1–3.5 kb and 580–700° C are estimated. The high geothermal gradient inferred from these conditions was probably caused by the intrusion of diorites associated with the gneiss complex. The Kelly's Mountain complex represents a rare example of migmatites formed in the low-pressure facies series, and illustrates some of the reactions involving melting in high grade pelitic rocks.  相似文献   

18.
This paper reports the results of a geochemical investigation of zircon from a migmatized aluminous gneiss (gn), melanosome (M), and sequential leucosome generations (Lc2, Lc3, Lc4, and Lc5) from an outcrop in the northwestern Ladoga region. The contents of REE, Y, Ti, Hf, Th, U, and P were determined using a Cameca IMS-4f ion microprobe in 12 zircon grains from the aforementioned rocks, in two-three spots in each grain. All of the specimens show rather uniform REE distribution patterns. More significant variations were observed in the light and medium REE (at smaller variations in the heavy REE), as well as in Ti, Y, Th, and U contents between zircons from the host rocks and from the leucosomes. It was supposed that REE-rich zircons from the gneiss and melanosome (without oscillatory zoning) are relics, whereas rhythmically zoned zircons with lower REE contents crystallized in the gneiss in the presence of dispersed anatectic melt. The contents of most REE and Y increase from core to rim in zircons from the gneiss, melanosome, Lc2, Lc4, and Lc5, which is opposite to the compositional trend of zircons from Lc3. It was shown that the decrease of HREE and Y content in zircon in the sequence Lc5gn → Lc2, Lc3, Lc4 is related to a decrease in the abundance of these elements in the rocks. The leucosomes do not correspond to a differentiation series of a single melt (there is no variation trends of Rb/Sr, K/Rb, and Rb/Ba in the rock series). The lower Lu/Hf and Sm/Nd values in the leucosomes relative to the host rocks allowed us to suppose that their protolith was gneisses (for Lc2) and migmatites (for Lc4 and Lc3). The similarity of the early migmatites and gneisses to Lc3 with respect to major and some trace elements and almost identical Lu/Hf and Sm/Nd values support the possibility of the formation of this leucosome generation during the beginning of the diatexis of migmatites, which was promoted by a temperature increase. This resulted in a specific trend in the content of some elements during zircon growth in Lc3, which is different from the trend of zircons from other leucosomes.  相似文献   

19.
Stromatic and schlieren-type migmatites are a major lithology in the type section of the Skagit Gneiss complex in the North Cascades Range of Washington State, USA. Migmatite mesosomes are chiefly biotite schist, amphibolite, and orthogneiss, in decreasing order of abundance. Leucosomes are predominantly leucotrondhjemites with a very limited range of composition that is nearly independent of associated mesosome type. Melanosomes, consisting mainly of biotite and/or hornblende±garnet, are inconsistently developed and absent in places. The age of migmatization is not well established, but appears to be Late Cretaceous or early Tertiary. This is also the age of syntectonic tonalite to trondhjemite intrusives that are predominant in most parts of the Skagit complex. Although temperatures in excess of 700° C and pressures as high as 10 kb occurred, there is no evidence for widespread partial melting of the mesosomes with which the migmatites are closely associated. Mass balance calculations preclude an origin by injection of a silicate melt or hydrothermal fluid unless accompanied by metasomatic replacement reactions. Mass balance relationships also show that the Skagit migmatites could not have formed solely by closed system processes such as partial melting or metamorphic segregation, unless the mesosomes present were not the protolith from which the migmatites formed. Field, petrographic and geochemical data indicate that an origin by migmatization of a missing mesosome is quite unlikely. The most feasible process of migmatization appears to be infiltration of an aqueous fluid into a metamorphic protolith along fracture or foliation planes. This triggers a variable degree of metamorphic segregation or possibly minor partial melting. Unmixing of leucosomes and melanosomes from the mesosome protolith must be accompanied by metasomatic replacement, but the total mass transfer required is only a few wt%.  相似文献   

20.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号