首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
Accurate magnetostratigraphic dating of Plio-Pleistocene alluvium in the Palomas half-graben permits correlation of transverse and axial deposits, thus enabling analysis of the movement of alluvial facies belts in time and space for the first time. Northern areas show evidence for basinward progradation of footwall-sourced Matuyama-age alluvial fan deposits over axial channel belt deposits of the ancestral Rio Grande, despite both deposits having similar deposition rates. This gradual ‘forced’ westward migration of the axial belt was in opposition to ongoing eastward growth of hangingwall-sourced fans and tectonic tilt imposed by the bounding Caballo normal fault. Fan growth was coincident with a recently proposed gradual climatic shift that may have increased sediment flux out of transverse catchments. It is also possible that continuing tectonic footwall uplift and divided retreat caused catchment areas to increase, contributing to these trends. Southern areas of the Palomas half-graben feature late Gilbert/early Gauss deposits indicative of rapid westwards progradation of large low-gradient, footwall-sourced fans over axial deposits. This ‘forced’ migration of the ancestral Rio Grande may have occurred due to footwall catchment and fan growth consequent upon initiation and growth of the Red Hills Fault. Subsequent eastward movement of the axial channel belt in late Gauss and Matuyama times overwhelmed these large fans. We attribute this to continued tilting on the Red Hills Fault and to development of the Jornada Fault to the south-east, the axial river belt avulsing north and eastwards through a developing Red Hills/Jornada crossover transfer zone. We conclude generally that facies architecture of axial and transverse elements in half-graben must reflect both climatic influences and the effects of fault development. Careful field mapping, accurate dating and palaeoclimatic studies are all necessary to determine the relative importance of these controls. Although adequate as broad guides, previous purely ‘fixist’ tectonosedimentary models allow for no fault growth, decay or climatic modulation of facies trends and are thus generally inadequate to explain important aspects rift basin stratigraphy.  相似文献   

2.
Active tectonics in a basin plays an important role in controlling a fluvial system through the change in channel slope. The Baghmati, an anabranching, foothills-fed river system, draining the plains of north Bihar in eastern India has responded to ongoing tectonic deformation in the basin. The relatively flat alluvial plains are traversed by several active subsurface faults, which divide the area in four tectonic blocks. Each tectonic block is characterized by association of fluvial anomalies viz. compressed meanders, knick point in longitudinal profiles, channel incision, anomalous sinuosity variations, sudden change in river flow direction, river flow against the local gradient and distribution of overbank flooding, lakes, and waterlogged area. Such fluvial anomalies have been identified on the repetitive satellite images and maps and interpreted through DEM and field observations to understand the nature of vertical movements in the area. The sub-surface faults in the Baghmati plains cut across the river channel and also run parallel which have allowed us to observe the effects of longitudinal and lateral tilting manifested in avulsions and morphological changes.  相似文献   

3.
The geomorphology and dynamics of the Mfolozi River floodplain and estuary, located in the subtropical region of northern KwaZulu-Natal, South Africa, were considered with respect to existing models of avulsion and alluvial stratigraphy. The Mfolozi River floodplain may be divided into regions based on longitudinal slope and dominant geomorphic processes. Confinement of the Mfolozi River above the floodplain has led to the development of an alluvial fan at the floodplain head, characterized by a relatively high sedimentation rate and avulsion frequency, at a gradient of 0.10%. The lower floodplain is controlled by sea level, with an average gradient of 0.05%. Between the two lies an extremely flat region with an average gradient of 0.02%, which may be controlled by faulting of the underlying bedrock.Avulsion occurrences on the Mfolozi floodplain are linked to the two main zones of aggradation, the alluvial fan at the floodplain head, and toward the river mouth in the lower floodplain. On the alluvial fan, normal flow conditions result in scour from local steepening. During infrequent, large flood events, the channel becomes overwhelmed with sediment and stream flow, and avulses. The resulting avulsion is regional, and affects the location of the channel from the floodplain head to the river mouth. Deposits resulting from such avulsions contribute significantly to the total volume of sediment stored in the floodplain, and tend to persist for long periods after the avulsion. Contrastingly, on the lower floodplain, reaching of the avulsion threshold is not necessarily linked to large flood events, but rather to long-term aggradation on the channel that decreases the existing channels gradient while increasing its elevation above the surrounding floodplain. Resultant avulsions tend to be local and do not contribute significantly to the overall volume of floodplain alluvium.  相似文献   

4.
Gregory R. Brooks   《Geomorphology》2003,54(3-4):197-215
The Holocene evolution of the shallow alluvial valley occupied by the Red River was investigated at two successive river meanders near St. Jean Baptiste, Manitoba. A transect of five boreholes was sited across the flood plain at each meander to follow the path of lateral channel migration. From the cores, 24 wood and charcoal samples were AMS radiocarbon dated. The dates from the lower half of the alluvium in each core are interpreted to represent the age of the lateral accretion deposits within the flood plain at the borehole sites. The ages of these deposits increase progressively from 900 to 7900 and 1000 to 8100 cal years B.P. along each transect, respectively, from the proximal to distal portions of the flood plain. At the upstream meander, the average rate of channel migration was initially 0.35 m/year between 7900 and 7400 cal years B.P., then decreased to 0.18 m/year between 7400 and 6200 cal years B.P., and subsequently varied between 0.04 and 0.08 m/year. Net channel incision of the river since 8100 cal years B.P. is estimated to have ranged between 0.4 and 0.8 m/ky. The pre-6000-years-B.P. interval of greater channel migration is hypothesized to reflect a higher phase of sediment supply that was associated with the establishment of the river system on the former bed of glacial Lake Agassiz. Since 1000 years B.P., the outward migration of the meanders has caused a gradual enlarging of 0.7–2% in the cross-sectional area of the shallow valley at the two meanders. When considered proportionally over timescales of up to several centuries, the widening of the valley cross-section is very low to negligible and is deemed an insignificant factor affecting the modern flood hazard on the clay plain.  相似文献   

5.
Tectonic influence on deltas has long been recognized for its importance in morphodynamic and stratigraphic development. Here, we explore the control of lateral tectonic tilting on a prograding fluviodeltaic system through six laboratory experiments with a range of tilting rates. Basement tilting was applied along an axis that bisects the centre of the experimental delta, which forced uplift on one half of the basin and subsidence on the opposite half. In the experiments with lower tilting rates, the delta advanced faster in the direction of uplift due to the decline in relative base level. This slow uplift created truncated stratigraphic intervals that were dominated by active channel cut and fill. On the opposite side where subsidence occurred, the shoreline still prograded, but with decreased rates, while the delta topset was deposited thicker, alternating packages of fine and coarse sediments. The fluvial system was active uniformly across the delta in these slow tilting runs and produced asymmetry in shoreline planform geometries. In the experiments with higher titling rates, deposition quickly ceased on the uplift side and stacked conformable sequences of delta lobes on the subsidence side. The result was an overall lack of progradation in all directions. Progressively greater tilting rates used in these high tilting runs yielded steering of channels towards the direction with higher subsidence and developed even more asymmetrical stratal patterns. Characteristic tectonic and channel timescales applied to the experimental conditions prove to be good predictors of the fluviodeltaic planform and stratigraphic asymmetries. The deltaic asymmetry for the Ganges–Brahmaputra (G–B) system is largely comparable to the experiments with timescale ratios similar to those estimated for the G–B system.  相似文献   

6.
A major issue in tectonics and sedimentation is the role of cross‐stream tectonic tilting in steering channels. The general idea is that channels will be attracted to lateral maxima in subsidence rate. A physical experiment performed in 1999 at the St. Anthony Falls Laboratory, however, was in conflict with the idea and showed that fluvial channels and resulting stratigraphy can be insensitive to even relatively strong lateral variation in subsidence. Here, we present results from an experiment which uses a simplified relay‐ramp geometry with laterally variable uplift and subsidence to test a hypothesis developed from the earlier experiment: Tectonic tilting steers channels only when the ratio of the time scales describing lateral channel mobility to tectonic deformation is sufficiently large. Occupation time by experimental channels and sand fraction in the deposit (a proxy for channel deposition) both increase with subsidence rate indicating strong steering of channels by tectonic forcing. We also found that, due to local incision, uplift lengthened the time scale for lateral channel migration relative to subsidence. Comparing channel mobility at the beginning of the experiment, with no tectonic forcing, to later tectonic stages of the experiment indicates that active tectonics increased the channel time scale. The interplay of channel steering with uplift and subsidence led to cyclic appearance and disappearance of an autogenic lake in the hanging‐wall basin. This lake was associated with alternation between channels going around vs. across the adjoining upstream uplifted footwall region. This creation and filling of the lake under constant tectonic forcing (constant fault slip rate) in the hanging wall created subaerial fan‐delta parasequences separated by fluvial deposits.  相似文献   

7.
The spatial organisation of meandering-river deposits varies greatly within the sedimentary fills of rift basins, depending on how differential rates of fault propagation and subsidence interplay with autogenic processes to drive changes in fluvial channel-belt position and rate of migration, avulsion frequency and mechanisms of meander-bend cut off. This set of processes fundamentally influences stacking patterns of the accumulated successions. Quantitative predictions of the spatio-temporal evolution and internal architecture of meandering fluvial deposits in such tectonically active settings remain limited. A numerical forward stratigraphic model—the Point-Bar Sedimentary Architecture Numerical Deduction (PB-SAND)—is applied to examine relationships between differential rates of subsidence and resultant fluvial channel-belt migration, reach avulsion and channel-deposit stacking in active, fault-bounded half-grabens. The model is used to reconstruct and predict the complex morphodynamics of fluvial meanders, their generated channel belts, and the associated lithofacies distributions that accumulate as heterogeneous fluvial successions in rift settings, constrained by data from seismic images and outcrop successions. The 3D modelling outputs are used to explore sedimentary heterogeneity at various spatio-temporal scales. Results show how the connectivity of sand-prone geobodies can be quantified as a function of subsidence rate, which itself decreases both along and away from the basin-bounding fault. In particular, results highlight the spatial variability in the size and connectedness of sand-prone geobodies that is seen in directions perpendicular and parallel to the basin axis, and that arises as a function of the interaction between spatial and temporal variations in rates of accommodation generation and fault-influenced changes in river morphodynamics. The results have applied significance, for example, to both hydrocarbon exploration and assessment of groundwater aquifers. The expected greatest connectivity of fluvial sandbody in a half-graben is primarily determined by the complex interplay between the frequency and rate of subsidence, the style of basin propagation, the rates of migration of channel belts, the frequency of avulsion and the proportion and spatial distribution of variably sand-prone channel and bar deposits.  相似文献   

8.
The Po River Basin, where accumulation and preservation of thick sedimentary packages are enhanced by high rates of tectonic subsidence, represents an ideal site to assess the relations between vertical changes in stratigraphic architecture and sediment accumulation rates. Based on a large stratigraphic database, a markedly contrasting stratigraphy of Late Pleistocene and Holocene deposits is reconstructed from the subsurface of the modern alluvial and coastal plains. Laterally extensive fluvial channel bodies and related pedogenically modified muds of latest Pleistocene age are unconformably overlain by Holocene overbank fines, grading seaward into paralic and nearshore facies associations. In the interfluvial areas, a stiff paleosol, dating at about 12.5–10 cal ky BP, marks the Pleistocene–Holocene boundary. Across this paleosol, aggradation rates (ARs) from 16 radiocarbon‐dated cores invariably show a sharp increase, from 0.1–0.9 mm year?1 to 0.9–2.9 mm year?1. Comparatively lower Pleistocene values are inferred to reflect fluvial activity under a low‐accommodation (lowstand and early transgressive) regime, whereas higher ARs during the Holocene are related to increasing accommodation under late transgressive and highstand conditions. Holocene sediment accumulation patterns vary significantly from site to site, and do not exhibit common trends. Very high accumulation rates (20–60 mm year?1) are indicated by fluvial channel or progradational delta facies, suggesting that extremely variable spatial distribution of Holocene ARs was primarily controlled by autogenic processes, such as fluvial channel avulsion or delta lobe switching. Contrasting AR between uppermost Pleistocene and Holocene deposits also are reported from the interfluves of several coeval, alluvial‐coastal plain systems worldwide, suggesting a key control by allogenic processes. Sediment accumulation curves from adjacent incised valley fills show, instead, variable shapes as a function of the complex mechanisms of valley formation and filling.  相似文献   

9.
The sediments of the Upper Cretaceous to lower Palaeogene Chalk Group were deposited through a wide range of depositional processes. Chalk was originally formed by settlement of coccolithophorid skeletal remains from suspension in the water column, with bottom currents redistributing the sediment shortly after deposition. Locally, tilting of the sea‐floor resulted in mass‐movement of chalk at scales varying from decimetre‐thick turbidites to slumps and slide sheets that were up to hundreds of metres thick. Syn‐depositional tectonic activity, therefore, constituted an important control on chalk facies. To study this relation in more detail, a three‐dimensional (3D)‐seismic stratigraphical analysis was carried out, comparing two study areas that experienced contrasting syn‐depositional tectonic evolutions. The Vlieland offshore area, which underwent gradual subsidence and westward tilting during deposition of the Chalk Group, is characterised by parallel and continuous reflections thought to represent pelagic chalk deposits. In the Dutch Central Graben, which was tectonically inverted during the Late Cretaceous to early Palaeogene, discontinuous and irregular seismic reflections that indicate large‐scale reworking of sediment are found. The improved image quality of 3D‐ vs. 2D‐seismic data allowed us to study the detailed geometry of allochthonous chalk bodies and aided the identification and tracing of the often subtle intra‐Chalk Group unconformities, resulting in a subdivision of the Chalk Group into seven seismic sequences.  相似文献   

10.
Formation of alluvial stratigraphy is controlled by autogenic processes that mix their imprints with allogenic forcing. In some alluvial successions, sedimentary cycles have been linked to astronomically‐driven, cyclic climate changes. However, it remains challenging to define how such cyclic allogenic forcing leads to sedimentary cycles when it continuously occurs in concert with autogenic forcing. Accordingly, we evaluate the impact of cyclic and non‐cyclic upstream forcing on alluvial stratigraphy through a process‐based alluvial architecture model, the Karssenberg and Bridge (2008) model (KB08). The KB08 model depicts diffusion‐based sediment transport, erosion and deposition within a network of channel belts and associated floodplains, with river avulsion dependent on lateral floodplain gradient, flood magnitude and frequency, and stochastic components. We find cyclic alluvial stratigraphic patterns to occur when there is cyclicity in the ratio of sediment supply over water discharge (Qs/Qw ratio), in the precondition that the allogenic forcing has sufficiently large amplitudes and long, but not very long, wavelengths, depending on inherent properties of the modelled basin (e.g. basin subsidence, size, and slope). Each alluvial stratigraphic cycle consists of two phases: an aggradation phase characterized by rapid sedimentation due to frequent channel shifting and a non‐deposition phase characterized by channel belt stability and, depending on Qs/Qw amplitudes, incision. Larger Qs/Qw ratio amplitudes contribute to weaker downstream signal shredding by stochastic components in the model. Floodplain topographic differences are found to be compensated by autogenic dynamics at certain compensational timescales in fully autogenic runs, while the presence of allogenic forcing clearly impacts the compensational stacking patterns.  相似文献   

11.
Woody vegetation affects channel morphogenesis in Ozark streams of Missouri and Arkansas by increasing local roughness, increasing bank strength, providing sedimentation sites, and creating obstructions to flow. Variations in physiographic controls on channel morphology result in systematic changes in vegetation patterns and geomorphic functions with increasing drainage basin area. In upstream reaches, streams have abundant bedrock control and bank heights that typically are less than or equal to the rooting depth of trees. In downstream reaches where valleys are wider and alluvial banks are higher vegetation has different geomorphic functions. At drainage areas of greater than 100–200 kM2, Ozarks streams are characterized by longitudinally juxtaposed reaches of high and low lateral channel migration rates, referred to as disturbance reaches and stable reaches, respectively. Whereas stable reaches can develop stable forested floodplains (if they are not farmed), disturbance reaches are characterized by dynamic vegetation communities that interact with erosion and deposition processes.Disturbance reaches can be subdivided into low-gradient and high-gradient longitudinal zones. Low-energy zones are characterized by incremental, unidirectional lateral channel migration and deposition of gravel and sand bars. The bars are characterized by prominent bands of woody vegetation and ridge and swale topography. Channel monitoring data indicate that densely vegetated bands of woody vegetation formed depositional sites during bedload-transporting events. The same floods caused up to 20 m of erosion of adjacent cutbanks, scoured non-vegetated areas between vegetation bands, and increased thalweg depth and definition. In high-energy (or riffle) zones, channel movement is dominantly by avulsion. In these zones, vegetation creates areas of erosional resistance that become temporary islands as the channel avulses around or through them. Woody vegetation on islands creates steep, root-defended banks that contribute to narrow channels with high velocities.Calculation of hydraulic roughness from density and average diameter of woody vegetation groups of different ages indicates that flow resistance provided by vegetation decreases systematically with group age, mainly through decreasing stem density. If all other factors remain constant, the stabilizing effect of a group of woody vegetation on a gravel bar decreases with vegetation age.  相似文献   

12.
Source-bordering dunefields have been reported in some drylands of the planet, but scarcely in China where there are extensive drylands. This article reports them in China for the first time, and presents a model for their active origin and development on a semiarid fluvial plain by means of satellite image analyses and field investigations. Local- and regional-scale examples are chosen to analyze the spatial patterns of dunefields, as well as the relationships with the fluvial systems in the central part of Naiman Banner where the Jiaolai River runs, and the lower Laoha River, and the middle and lower Ulijimulun River (principal tributaries of the Xiliaohe River). The active origin and development of source-bordering dunefields can be divided into four stages in terms of the spatial patterns of dunefields and channel dynamics: Stage I — individual dunes on the downwind margins of river valleys where running water constantly erodes the steep slopes of valley and where the downwind slopes orient to local dominant winds; Stage II — individual local-scale dunefields formed by deflation of the steep valley slopes and extending antecedent dunes downwind, together with the downstream displacement of meanders; Stage III — individual large-scale dunefield belts along the downwind margins of river valleys formed through frequent lateral migrations of channel; Stage IV — regional-scale dunefields formed mainly by river diversions due to climatic changes or tectonic movements. On the one hand, it is the running water's lateral migration, especially meandering, that prepares suitable places for aeolian systems in terms of both wind flow fields and sand sources, and subsequently it can further cause separate local-scale source-bordering dunefields to link together as a regional-scale dunefield belt given sufficient time. On the other hand, diversions of the river are bound to occur following changing hydrologic regimes resulting from tectonic movements or significant climate change (at regional and millennium scales). As a result, when some dunefield belts as well as the adjacent channels are abandoned, new channels work elsewhere in the same way to actively form new source-bordering dunefields and even dunefield belts at a regional scale.  相似文献   

13.
Drainage basin geometry was analyzed in the lower portion of the Big Black River, Mississippi. The study was centered on a reach of the Big Black River that encompasses an anomalous straight reach (ASR) and has morphometric characteristics that differ from those of upstream and downstream reaches. The study area was divided into three reaches, defined by alluvial valley and active floodplain width, sinuosity, and slope. Tributary streams with confluences in the three study reaches were investigated for evidence of surface tilting, and channel and valley slopes and sinuosity were measured. The average stream channel and valley slopes within the middle reach are nearly double those of the upper and lower reaches. Lateral stream migration within the tributary basins was quantitatively analyzed by measuring the asymmetry factor (AF) and transverse topographic symmetry factor (T) indices. While AF results suggest minimal to no lateral migration within the tributaries, the T results show some shifting. The results are inconclusive regarding the possible effect of neotectonic activity in the study area near the ASR. The mean southward migration may indicate a preferred migration direction relative to the general dip of the coastal plain and plunge of the Mississippi Embayment.  相似文献   

14.
The Holocene avulsion history of the lower Brazos alluvial valley of east Texas, USA, was studied using 10 drill cores, 26 radiocarbon dates, aerial photos, and a digital elevation model. This study shows that two long-term processes, aggradation and localized valley tilting (along a normal listric fault), are responsible for generating two styles of avulsion. The first process precedes avulsion-by-progradation, while the second process precedes avulsion-by-annexation. As valley aggradation migrated updip over the last 7.5 ka, three regional backstepping avulsions occurred along the lower 140 km of the valley and each generated sizable deposits. A pattern emerges of landward stepping progradational avulsions tracking the locus of valley aggradation and of valley aggradation migrating inland even after the rate of sea level rise diminishes. At the same time, several local nodal avulsions occurred between 50 and 55 km updip of the current highstand shoreline but generated no observable deposits. Geomorphic evidence indicates that, since the late Pleistocene, active movement along a previously undocumented normal listric fault has occurred at the location of the nodal avulsion. These two long-term processes do not operate mutually exclusive of each other to promote avulsions; rather, they operate concurrently. Only aggradation promotes avulsions that affect floodplain alluviation, although the total volume of these deposits comprises a small portion of the valley fill.  相似文献   

15.
While studies on gravel mantled and mixed alluvial bedrock rivers have increased in recent decades, few field studies have focused on spatial distributions of bedrock and alluvial reaches and differences between reach types. The objective of this work is to identify the spatial distribution of alluvial and bedrock reaches in the Upper Guadalupe River. We compare reach length, channel and floodplain width, sinuosity, bar length and spacing, bar surface grain size, and slope in alluvial and bedrock reaches to identify whether major differences exist between channel reach types. We find that local disturbances, interaction of the channel and valley sides, variation in lithology, and regional structural control contribute to the distribution of bedrock reaches in the largely alluvial channel. Alluvial and bedrock channel reaches in the Upper Guadalupe River are similar, particularly with respect to the distribution of gravel bars, surface grain size distributions of bars, and channel slope and width. Our observations suggest that the fluvial system has adjusted to changes in base level associated with the Balcones Escarpment Fault Zone by phased incision into alluvial sediment and the underlying bedrock, essentially shifting from a fully alluvial river to a mixed alluvial bedrock river.  相似文献   

16.
GPR and aerial surveys were conducted to study changes of channel pattern in the lower course of the Obra River (western Poland). The river is an example of an intensive anthropogenic transformation, however, the origin of the river pattern changes in its lower course is not obvious. The GPR measurements were done using a georadar MALÅ ProEx equipped with a shielded 250 MHz antenna. A 3D analysis of the GPR data supported with lithologic information indicated traces of a multi‐channel pattern. A variable orientation of sediment layering within channel bars and differences in channels depth and width pointed to changes of direction of the river bed migration. Analysis of aerial photographs and a satellite image indicated that only a few of the channels inferred from GPR could be discerned. The reason could be the more than 1 m thick fine sands layer covering all the alluvial structures. Analysis of historical maps from the eighteenth and the nineteenth centuries showed that 250 years ago the Obra was a meandering river. The maps illustrate also several meander cutoffs and decreased wetlands surface. The following transformations of the river bed pattern were discerned: 1. From braided to meandering channel pattern which could be a natural process caused by climatic and sediment transport rate changes that was also observed in case of other lowland rivers. 2. From meandering to sinuous pattern with channel islands and then to sinuous with oxbow lakes. However, further research is needed to study reasons and timing of the observed changes.  相似文献   

17.
Understanding the relationship between sedimentation and tectonics is critical to the analysis of stratigraphic evolution in foreland basins. Previous models of foreland basins have explained stratal development, but were done generally under the assumption that steady allogenic forcing produces a steady stratigraphic response. They did not consider autogenic shoreline behaviour during the development of the subsidence pattern characteristic of foreland basins. We present a mathematical model and flume experiments that explore how subsidence and sediment‐supply rates control the shoreline trajectory and the stratal patterns that fill foreland basins. Through these models, we found differing autogenic responses in the rate and direction of shoreline migration, and these generated three distinct styles of stratal architecture, despite the constant external forcing (i.e. constant sediment discharge and basin substrate tilting). The first response was ‘autoretreat’, where shoreline migration switched from initial progradation to retrogradation. The second response was progradation followed by constant aggradation of the shoreline. The third response was maintained progradation with a markedly accelerating rate. We termed this latter newly observed autogenic behaviour ‘shoreline autoacceleration’. These three modes of shoreline behaviour and their accompanying stratal architecture provide a basic framework for the relationship between sedimentation and tectonic activity in foreland basins under the simplified conditions presented here.  相似文献   

18.
《Basin Research》2018,30(4):783-798
When we model fluvial sedimentation and the resultant alluvial stratigraphy, we typically focus on the effects of local parameters (e.g., sediment flux, water discharge, grain size) and the effects of regional changes in boundary conditions applied in the source region (i.e., climate, tectonics) and at the shoreline (i.e., sea level). In recent years this viewpoint has been codified into the “source‐to‐sink” paradigm, wherein major shifts in sediment flux, grain‐size fining trends, channel‐stacking patterns, floodplain deposition and larger stratigraphic systems tracts are interpreted in terms of (1) tectonic and climatic signals originating in the hinterland that propagate downstream; and (2) eustatic fluctuation, which affects the position of the shoreline and dictates the generation of accommodation. Within this paradigm, eustasy represents the sole means by which downstream processes may affect terrestrial depositional systems. Here, we detail three experimental cases in which coastal rivers are strongly influenced by offshore and slope transport systems via the clinoform geometries typical of prograding sedimentary bodies. These examples illustrate an underdeveloped, but potentially important “sink‐to‐source” influence on the evolution of fluvial‐deltaic systems. The experiments illustrate the effects of (1) submarine hyperpycnal flows, (2) submarine delta front failure events, and (3) deformable substrates within prodelta and offshore settings. These submarine processes generate (1) erosional knickpoints in coastal rivers, (2) increased river channel occupancy times, (3) rapid rates of shoreline movement, and (4) localized zones of significant offshore sediment accumulation. Ramifications for coastal plain and deltaic stratigraphic patterns include changes in the hierarchy of scour surfaces, fluvial sand‐body geometries, reconstruction of sea‐level variability and large‐scale stratal geometries, all of which are linked to the identification and interpretation of sequences and systems tracts.  相似文献   

19.
Three-dimensional morphological adjustment in a chute cutoff (breach) alluvial channel is quantified using Digital Elevation Model (DEM) analysis for a ca. 0.7 km reach of the River Coquet, Northumberland, UK. Following cutoff in January 1999, channel and bar topography was surveyed using a Total Station on five occasions between February 1999 and December 2000. Analysis of planform change coupled with DEM differencing elucidates channel and barform development following cutoff, and enables quantification of sediment transfers associated with morphological adjustment within the reach. This exercise indicates an initial phase of bed scour, followed by a period characterised by extensive bank erosion and lateral channel migration where erosion (including bed scour) totalled some 15,000 m3 of sediment. The channel in the post-cutoff, disequilibrium state is highly sensitive to relatively low-magnitude floods, and provision of accommodation space by bank erosion encouraged extensive lateral bar development. Bar development was further facilitated by infilling of channels abandoned by repeated within-reach avulsion and large-scale aggradation of sediment lobes deposited by higher magnitude floods. Calculations indicate that at least 6600 m3 of sediment was deposited on emerging bars within the reach over the survey period, and >2300 m3 deposited within the channel. Sediment losses from the reach may have exceeded 6500 m3.  相似文献   

20.
Complexity in a cellular model of river avulsion   总被引:2,自引:1,他引:2  
We propose a new model of river avulsion that emphasizes simplicity, self-organization, and unprogrammed behavior rather than detailed simulation. The model runs on a fixed cellular grid and tracks two elevations in each cell, a high elevation representing the channel (levee) top and a low one representing the channel bottom. The channel aggrades in place until a superelevation threshold for avulsion is met. After an avulsion is triggered a new flow path is selected by steepest descent based on the low values of elevation. Flow path depends sensitively on floodplain topography, particularly the presence of former abandoned channels. Several behavioral characteristics emerge consistently from this simple model: (1) a tendency of the active flow to switch among a small number of channel paths, which we term the active channel set, over extended periods, leading to clustering and formation of multistory sand bodies in the resulting deposits; (2) a tendency for avulsed channels to return to their previous paths, so that new channel length tends to be generated in relatively short segments; and (3) avulsion-related sediment storage and release, leading to pulsed sediment output even for constant input. Each of these behaviors is consistent with observations from depositional river systems. A single-valued threshold produces a wide variety of avulsion sizes and styles. Larger “nodal” avulsions are rarer because pre-existing floodplain topography acts to steer flow back to the active channel. Channel stacking pattern is very sensitive to floodplain deposition. This work highlights the need to develop models of floodplain evolution at large time and space scales to complement the improving models of river channel evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号