首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Abstract Past oceanic sulphate concentration is important for understanding how the oceans’ redox state responded to atmospheric oxygen levels. The absence of extensive marine sulphate evaporites before ~1.2 Gyr probably reflects low seawater sulphate and/or higher carbonate concentrations. Sulphate evaporites formed locally during the 2.22–2.06 Gyr Lomagundi positive δ13C excursion. However, the ~2.2–2.1 Gyr Lucknow Formation, South Africa, provides the first direct evidence for seawater sulphate precipitation on a carbonate platform with open ocean access and limited terrestrial input. These marginal marine deposits contain evidence for evaporite molds, pseudomorphs after selenite gypsum, and solid inclusions of Ca‐sulphate in quartz. Carbon and sulphur isotope data match the global record and indicate a marine source of the evaporitic brines. The apparent precipitation of gypsum before halite requires ≥2.5 mm L?1 sulphate concentration, higher than current estimates for the Paleoproterozoic. During the Lomagundi event, which postdates the 2.32 Gyr initial rise in atmospheric oxygen, seawater sulphate concentration rose from Archean values of ≤200 μm L?1, but dropped subsequently because of higher pyrite burial rates and a lower oceanic redox state.  相似文献   

2.
地球的大气圈、水圈的形成在太阳系中具有独特性。大气圈、水圈的物质组成呈现阶段性的演化特征。在不同的演化阶段,地球表生地质作用表现出不同的特征和状况,显示出地球大气圈、水圈化学变化对其的控制作用。在长时间尺度范围内,大气和海洋化学变化直接影响表生系统的岩石风化强度和特点、沉积物类型、矿产时空分布规律;在短时间尺度范围内,大气物质组成的变化引起气候变化,间接地、综合地影响和改变表生地质作用的状况。同时,表生地质作用反过来又影响大气圈、水圈的物质组成演化,两者相互作用,相互影响,构成地球表生系统的相互耦合关系。  相似文献   

3.
Sumner DY  Grotzinger JP 《Geology》1996,24(2):119-122
Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.  相似文献   

4.
The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today’s. Extremely Fe-rich sedimentary deposits—i.e., Fe formations—are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding chemistry of the ancient ocean. However, many earlier REE studies of Fe formations have drawn ambiguous conclusions, partially due to analytical limitations and sampling from severely altered units. Here, we present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations. There are several temporal trends in our REE and Y dataset that reflect shifts in marine redox conditions. In general, Archean Fe formations do not display significant shale-normalized negative Ce anomalies, and only Fe formations younger than 1.9 Ga display prominent positive Ce anomalies. Low Y/Ho ratios and high shale-normalized light to heavy REE (LREE/HREE) ratios are also present in ca. 1.9 Ga and younger Fe formations but are essentially absent in their Archean counterparts. These marked differences in Paleoproterozoic versus Archean REE + Y patterns can be explained in terms of varying REE cycling in the water column.Similar to modern redox-stratified basins, the REE + Y patterns in late Paleoproterozoic Fe formations record evidence of a shuttle of metal and Ce oxides across the redoxcline from oxic shallow seawater to deeper anoxic waters. Oxide dissolution—mainly of Mn oxides—in an anoxic water column lowers the dissolved Y/Ho ratio, raises the light to heavy REE ratio, and increases the concentration of Ce relative to the neighboring REE (La and Pr). Fe oxides precipitating at or near the chemocline will capture these REE anomalies and thus evidence for this oxide shuttle. In contrast, Archean Fe formations do not display REE + Y patterns indicative of an oxide shuttle, which implies an absence of a distinct Mn redoxcline prior to the rise of atmospheric oxygen in the early Paleoproterozoic. As further evidence for reducing conditions in shallow-water environments of the Archean ocean, REE data for carbonates deposited on shallow-water Archean carbonate platforms that stratigraphically underlie Fe formations also lack negative Ce anomalies. These results question classical models for deposition of Archean Fe formations that invoke oxidation by free oxygen at or above a redoxcline. In contrast, we add to growing evidence that metabolic Fe oxidation is a more likely oxidative mechanism for these Fe formations, implying that the Fe distribution in Archean oceans could have been controlled by microbial Fe uptake rather than the oxidative potential of shallow-marine environments.  相似文献   

5.
海相碳酸盐的沉淀方式被认为与水体氧化还原条件密切相关,即太古宙至古元古代缺氧的铁化海水中碳酸盐沉淀抑制剂Fe2+和Mn2+强力抑制灰泥在水柱中成核,但允许文石直接在海底生长,从而导致大量文石以海底沉淀方式产出,而新元古代适度的氧化海水则有利于灰泥以水柱沉淀方式形成。然而,碳酸盐沉淀方式的长期变化还可能受控于其他因素,其与海水氧化还原条件之间的关系还需要通过大量具体实例来验证。针对上述科学问题,笔者选择碳酸盐沉淀方式尚处于过渡时期的华北中元古界碳酸盐岩为研究对象,开展碳酸盐沉淀方式及与之对应的氧化还原条件研究。结果表明,华北高于庄组三段(约1.56 Ga)、雾迷山组四段下部(约1.48 Ga)和铁岭组二段(约1.44 Ga)发育大量灰泥水柱沉淀,其Ⅰ/(Ca+Mg)值较高(普遍大于0.5 μmol/mol)、Ce负异常(低至0.8),指示适度氧化的条件;而高于庄组四段下部(约1.55 Ga)和雾迷山组二段中部(约1.50 Ga)则发育大量纤维状文石海底沉淀,其Ⅰ/(Ca+Mg)值约为0,指示次氧化至缺氧的环境。因此,本研究首次用大量实例证实了前寒武纪海水氧化还原条件对碳酸盐沉淀方式的重要调控作用,并且后者可作为海水氧化还原条件分析的重要指标,适用于高效开展长序列、多剖面的低氧背景下前寒武纪碳酸盐岩地层的氧化还原条件分析。  相似文献   

6.
研究试图利用Li同位素地球化学对太古代海水相关的表生环境过程进行初步的限定.通过对来自南非Kaapvaal克拉通的海相碳酸盐岩样品进行Li同位素分析,发现在3.0~2.9 Ga期间形成的碳酸盐岩δ7Li值为~+1‰,而在2.6~2.5 Ga期间,碳酸盐岩δ7Li值达到7‰~10‰.经过反演计算得到对应时代的海水Li同位素组成分别为~+12‰和~+20‰,均明显低于现代海水值(~+31‰),但是2.6~2.5 Ga期间的海水δ7Li值要比3.0~2.9 Ga时高出8‰.作为大陆硅酸岩风化的有效示踪剂,太古代海水较低的Li同位素组成表明当时的地表风化以源岩溶解为主,次生矿物形成极少,在3.0~2.5 Ga期间,海水整体温度下降以及次生矿物形成增加可能共同导致了海水δ7Li值的升高.通过对太古代碳酸盐岩的Li同位素研究能够有效反演古海水的Li同位素组成,并为了解太古代表生风化过程对海水的影响提供了新的信息.   相似文献   

7.
Seawater at different stages of evaporation from the salt works of Seovlje near Portoro (Yugoslavia) was analyzed geochemically. The seawater there passes through 20 stages of concentration until the first halite crystallizes. All important parameters were determined at all stages: concentrations of Cl, SO4, Na, K, Ca, Mg, and Br, temperature, pH, Eh, oxygen content and titration alkalinity. With increasing evaporation calcium carbonate crystallizes first followed by calcium sulphate as gypsum and after these halite. All three components crystallize from supersaturated solutions. The pH of the initial seawater is 8.32; it falls abruptly to 6.65 when the first calcium carbonate precipitates. Eh in the original seawater is +393 mv; negative values were found in the halite crystallization pans, which contain an anaerobic mud as a reducing agent. The oxygen content of the solution decreases parallel to the drop in Eh. In the pans in which NaCl crystallizes Eh is zero. Apparently the mud also adsorbs K, as can be inferred from a change in the Mg/K ratio.The bromine partition between crystallizing halite and the brine in the salt pans of Seovlje is discussed with regard to some genetic problems of marine salt deposits. In the conditions in the salt pans the bromine partition coefficient at the beginning of NaCl crystallization from seawater—expressed as b=wt.-% Br (mineral)/wt.-% Br (solution)—is 0.12 to 0.14 or—expressed as D=Br/Cl(mineral)/Br/Cl(solution)—0.030 to 0.034 at temperatures between 33° C and 42° C. The conclusion is that a Br content of about 60 to 75 ppm is to be expected for the first halite that crystallizes from evaporating seawater.  相似文献   

8.
Relatively soon (0.2 Ga) after the Earthformed, it is likely that major oceans appeared in ahot (100°C) reducing environment where carbondioxide was probably the dominant atmospheric gas,with PCO2, values reaching perhaps in excess of 10atm. During the Hadean Eon between 4.3 and 3.8 Ga BP,major changes in the concentration of atmosphericCO2 and associated temperature changes had aprofound influence on the carbonate geochemistry ofthe Hadean Ocean. Although no rocks are known to havesurvived prior to the Archean Eon, it is stillpossible to calculate approximate values for importantseawater parameters during the Hadean Eon based onother sources of information and reasonableassumptions about processes such as weatheringreactions.Our calculations are based on a linear temperaturechange from 100°C to 70°C and logPCO2 change from 1 to -1.5 over the Hadean Eon. Over this range in temperature and P CO2, theinfluence of T is relatively small, but changes inP CO2 result in large compositional variations inthe carbonate chemistry of Hadean seawater. In theearly Hadean, seawater pH was probably about5.8 ± 0.2, DIC may have reached close to 130 mM,and alkalinity was perhaps close to 30 mM. By thelate Hadean, seawater pH probably had changed to closeto neutral (6.8), and DIC and alkalinity were closerto present-day values. Even large uncertainties inNa+ + Cl-, K+ and Mg2+concentrations produce relatively small uncertaintiesin our calculated values for the carbonic acid system. However, larger uncertainties result from reasonableranges for Ca2+ concentrations and the saturationstate of Hadean seawater with respect to calcite.Our calculations support the hypothesis that acarbonate chemistry of seawater roughly similar tothat of modern oceans could have been acquired veryearly in Earth history. If seawater composition werebuffered by reactions involving carbonates andsilicates, then the composition of late Hadean-earlyArchean seawater was not vastly different from that oftoday. Thus, by the conclusion of the Hadean Eon, ifnot before, environmental conditions at the Earth's surface, including temperature and seawatercomposition, were sufficiently equable for theevolution of life, including the Archaebacteria: theextreme halophiles and thermophiles and methanogens.Contrary to the hypothesis of an early Na-bicarbonateocean, our calculations suggest the possibility thatthe early oceans of Earth were a NaCl-dominatedaqueous solution, with somewhat higher DIC andalkalinity concentrations, higher saturation state,and the possibility of lower calcium concentrations.The time course of approach of Hadean seawater to acarbonate composition closer to that of today isdifficult to predict. It is distinctly possible thatthe concentration of calcium in seawater did not reachlevels like that of modern seawater until the latePrecambrian and thus constrained the timing of the"Big Bang" of organic evolution, the emergence of theshelled invertebrates at the beginning of thePhanerozoic.  相似文献   

9.
鱼骨状方解石是一种特殊的碳酸盐沉积,由锯齿状亮暗交互的亚毫米级条带组成,主要见于太古宙。以往认为,鱼骨状方解石属无机化学沉淀成因,形成于水体缺氧、碳酸盐过饱和、富Fe2+、Mn2+等碳酸盐沉淀抑制剂的环境条件;在地质记录中其丰度随时间的减少反映了海洋的长期氧化趋势。文中首次在华北地台中元古界高于庄组四段微生物礁内发现了大量鱼骨状方解石。宏观观察表明,这些鱼骨状方解石主要以微生物礁孔洞充填物形式产出,明显区别于太古宙以海底沉淀形式直接产出在海底的鱼骨状方解石。显微研究发现,鱼骨状方解石晶体纤维具有沿晶体生长方向旋转消光特征,证明其内部亚晶的光学C轴从纤维底部的随机排列逐步旋转至上部垂直纤维生长方向。这符合球状晶体生长模式,需要方解石沉淀抑制剂的参与。鱼骨状方解石产出具有丰度随时间减少以及产出形式由海底沉淀向孔洞胶结物转变的特征。这些特征与海洋氧化逐渐增强以及具氧化还原敏感属性的碳酸盐沉淀抑制剂逐渐从水体中移除相吻合。笔者认为鱼骨状方解石的沉淀抑制剂为Fe2+和Mn2+,这与微生物岩无明显Ce异常和Fe2+极强的抑制能力相一致。因此,鱼骨状方解石可用于指示缺氧环境条件。此外,显微和超微研究也表明鱼骨状方解石晶体内存在有大量与其生长方向一致的菌丝体残余和与之密切伴生的有机矿物,表明微生物为鱼骨状方解石成核和初始沉淀提供了重要垫板。  相似文献   

10.
Rare earth elements (REE) concentrations of Archean and Proterozoic chemical sediments are commonly used as proxies to study secular trends in the geochemistry of Precambrian seawater. In addition, similarities in the REE signatures of Archean chemical sediments and modern seawater have led researchers to argue that some Archean rocks originated as biochemical precipitates (i.e., microbial carbonates) in shallow marine (e.g., peritidal) environments. However, terrestrial waters, including river water and groundwater, also commonly exhibit REE fractionation patterns that resemble modern seawater. Here, we present the seawater-like REE data for groundwaters from central México as additional evidence that these patterns are not unique to the marine environment. The shale-normalized REE patterns of the groundwaters are compared to those of modern seawater (open ocean and nearshore), Holocene reefal microbial carbonates and corals, and Archean chemical sediments using statistical means (i.e., ANOVA and Wilcoxon analyses) in order to quantify the similarities and/or differences in the REE patterns. Shale-normalized (SN) Ce anomalies and measures of REE fractionation [i.e., (La/Yb)SN, (Pr/Yb)SN, (Nd/Yb)SN, and (Gd/Yb)SN] of the central México groundwater samples are statistically indistinguishable from those of modern seawater. Moreover, except for differences in the Ce anomalies, which are lacking in Archean chemical sediments, the REE patterns of the central México groundwaters are also statistically similar to REE patterns of Archean chemical sediments, especially those of the 3.45 Ga Strelley Pool Chert. Consequently, we suggest that without additional information, it may be premature to unequivocally conclude that Archean chemical sediments record REE signatures of an Archean ocean.  相似文献   

11.
Warren B. Hamilton 《Lithos》2011,123(1-4):1-20
Archean, Paleoproterozoic, and Mesoproterozoic rocks, assemblages, and structures differ greatly both from each other and from modern ones, and lack evidence for subduction and seafloor spreading such as is widespread in Phanerozoic terrains. Most specialists nevertheless apply non-actualistic plate-tectonic explanations to the ancient terrains and do not consider alternatives. This report evaluates popular concepts with multidisciplinary information, and proposes options. The key is fractionation by ca. 4.45 Ga of the hot young Earth into core, severely depleted mantle, and thick mafic protocrust, followed by still-continuing re-enrichment of upper mantle from the top. This is opposite to the popular assumption that silicate Earth is still slowly and unidirectionally fractionating. The protocrust contained most material from which all subsequent crust was derived, either directly, or indirectly after downward recycling. Tonalite, trondhjemite, and granodiorite (TTG), dominant components of Archean crust, were derived mostly by partial melting of protocrust. Dense restitic protocrust delaminated and sank into hot, weak dunite mantle, which, displaced upward, enabled further partial melting of protocrust. Sinkers enriched the upper mantle, in part maintaining coherence as distinct dense rocks, and in part yielding melts that metasomatized depleted-mantle dunite to more pyroxenic and garnetiferous rocks. Not until ca. 3.6 Ga was TTG crust cool enough to allow mafic and ultramafic lavas, from both protocrust and re-enriched mantle, to erupt to the surface, and then to sag as synclinal keels between rising diapiric batholiths; simultaneously upper crust deformed ductily, then brittly, above slowly flowing hot lower TTG crust. Paleoproterozoic and Mesoproterozoic orogens appear to be largely ensialic, developed from very thick basin-filling sedimentary and volcanic rocks on thinned Archean or Paleoproterozoic crust and remaining mafic protocrust, above moderately re-enriched mantle. Subduction, and perhaps the continent/ocean lithospheric dichotomy, began ca. 850 Ma – although fully modern plate-tectonic processes began only in Ordovician time – and continued to enrich the cooling mantle in excess of partial melts that contributed to new crust. “Plumes” from deep mantle do not operate in the modern Earth and did not operate in Precambrian time.  相似文献   

12.
《Applied Geochemistry》2004,19(5):645-664
Sediment and water samples from 12 saline pans on the semi-arid west coast of South Africa were analysed to determine the origin of salts and geochemical evolution of water in the pans. Pans in the area can be subdivided into large, gypsiferous coastal pans with 79–150 g/kg total dissolved salt (TDS), small inland brackish to saline (2–64 g/kg TDS) pans and small inland brine (168-531 g/kg TDS) pans that have a layer of black sulphidic mud below a halite crust. The salinity of coastal pan waters varies with the seasonal influx of dilute runoff and dissolution of relict Pleistocene marine evaporite deposits. In contrast, inland pans are local topographic depressions, bordered on the north by downslope lunette dunes, where solutes are concentrated by evaporation of runoff, throughflow and groundwater seepage. The composition of runoff and seepage inflow waters is determined by modification of coastal rainfall by weathering, calcite precipitation and ion exchange reactions in the predominantly granitic catchment soils. Evaporation of pan waters leads to precipitation of calcite, Mg–calcite, dolomite, gypsum and halite in a distinct stratigraphic succession in pan sediments. Bicarbonate limits carbonate precipitation, Ca limits gypsum precipitation and Na limits halite precipitation. Dolomitisation of calcite is enhanced by the high Mg/Ca ratio of brine pan waters. Brine pan waters evolve seasonally from Na–Cl dominated brines in the wet winter months to Mg–Cl dominated brines in the dry summer months, when 5–20 cm thick halite crusts cover pan surfaces. Pan formation was probably initiated during a drier climate period in the early Holocene. More recent replacement of natural vegetation by cultivated land may have accelerated salt accumulation in the pans.  相似文献   

13.
Based on the petrology of hydrothermally altered Archean basaltic greenstones, thermodynamic calculations of phase equilibria were conducted to estimate the composition of a high-temperature (∼350 °C) hydrothermal fluid in an Archean subseafloor basalt-hosted hydrothermal system. The results indicate that the hydrothermal fluid was highly alkaline attributed to the presence of calcite in the alteration minerals under a high-CO2 condition, and predict a generation of SiO2-rich, Fe-poor hydrothermal fluids in the Archean subseafloor hydrothermal system. The chemically reactive mixing zones between alkaline hydrothermal fluids and slightly acidic-neutral seawater are characterized by inverse pH and chemical polarity to modern hydrothermal systems, leading to extensive precipitation of silica and iron oxyhydroxides on/under the seafloor. Such processes can be responsible for the abiotic formation of voluminous chert and subseafloor silica dike, the mechanism of silicification, and the pH-controlled generation of banded iron formation that has been arising mainly from the redox chemistry in the Archean ocean. Such high-temperature alkaline fluids could have had a significant role not only in the early ocean geochemical processes but also in the early evolution of life.  相似文献   

14.
Nd data from the Paleoproterozoic magmatic rocks of Vila Riozinho and Jamanxim (Tapajós gold province) indicate that original magmas were not produced exclusively by the remelting of Archean sialic crust and point to dominant Paleoproterozoic sources. εNd(T) values preclude derivation from mantle sources for the ca. 2.0 Ga Vila Riozinho volcanics and older São Jorge granite. They may represent a subduction-related magmatic arc with magmas modified by interaction with crust or a post- to late-orogenic remelting of an older Paleoproterozoic juvenile arc with minimal contribution from the Archean crust. The origin of the 1.88 Ga Parauari, Maloquinha, Iriri, and Moraes Almeida igneous associations and the Jamanxim rhyolites has been attributed to large-scale taphrogenesis that marked the breakup of a large Paleoproterozoic continent. Derivation of the original magmas from the remelting of crustal sources older than ca. 1.9 Ga is consistent with geochemical and Nd isotopic data. Archean remnants probably occur between the Paleoproterozoic terrains of the Ventuari-Tapajós province. Archean terrains of the Amazon craton extend from the Xingu to the Itaituba region but have not been identified in the southern Guyana shield. Thus, data reveal that the boundaries between the central Amazon and Ventuari-Tapajós provinces need better definition and more detailed field and geochronological work.  相似文献   

15.
钙离子是海洋11种常量离子之一,与钠、钾等离子的保守性不同,钙离子在海洋中的分布表现出微小但系统的变化。钙离子的变化往往与海洋碳酸钙的形成和溶解过程有关,所以,钙离子可直接指示海洋碳酸钙通量(深层海洋碳通量的主要组成部分)。同时,碳酸钙沉淀或溶解又会改变总碱度和溶解无机碳,通过钙离子变化也能间接探讨海洋碳酸盐系统和海洋吸收CO2的能力。介绍了以碳酸钙溶解形成超额钙为主的海洋钙离子多种非保守行为及其控制过程,讨论这些过程对海水组成和海洋碳酸盐系统的影响,探讨未来海洋酸化条件下钙离子可能的变化及其潜在的效应,最后展望在南海开展钙离子精细行为的研究意义。   相似文献   

16.
Concentrations of oceanic and atmospheric oxygen have varied over geologic time as a function of sulfur and carbon cycling at or near the Earth’s surface. This balance is expressed in the sulfur isotope composition of seawater sulfate. Given the near absence of gypsum in pre-Phanerozoic sediments, trace amounts of carbonate-associated sulfate (CAS) within limestones or dolostones provide the best available constraints on the isotopic composition of sulfate in Precambrian seawater. Although absolute CAS concentrations, which range from those below detection to ∼120 ppm sulfate in this study, may be compromised by diagenesis, the sulfur isotope compositions can be buffered sufficiently to retain primary values.Stratigraphically controlled δ34S measurements for CAS from three mid-Proterozoic carbonate successions (∼1.2 Ga Mescal Limestone, Apache Group, Arizona, USA; ∼1.45-1.47 Ga Helena and Newland formations, Belt Supergroup, Montana, USA; and ∼1.65 Ga Paradise Creek Formation, McNamara Group, NW Queensland, Australia) show large isotopic variability (+9.1‰ to +18.9‰, −1.1‰ to +27.3‰, and +14.1‰ to +37.3‰, respectively) over stratigraphic intervals of ∼50 to 450 m. This rapid variability, ranging from scattered to highly systematic, and overall low CAS abundances can be linked to sulfate concentrations in the mid-Proterozoic ocean that were substantially lower than those of the Phanerozoic but higher than values inferred for the Archean. Results from the Belt Supergroup specifically corroborate previous arguments for seawater contributions to the basin. Limited sulfate availability that tracks the oxygenation history of the early atmosphere is also consistent with the possibility of extensive deep-ocean sulfate reduction, the scarcity of bedded gypsum, and the stratigraphic δ34S trends and 34S enrichments commonly observed for iron sulfides of mid-Proterozoic age.  相似文献   

17.
Activity ratios of 234U/238U, 230Th/234U, and 230Th/232Th have been determined for calcite, gypsum and halite speleothems from caves of the Nullarbor Plain, mostly in the area N and NW of Mundrabilla Station, for the purpose of U-series dating. All calcite speleothems contain adequate amounts of uranium for dating, but some show an excess of 230Th. Stratigraphic relationships indicate that there were at least three phases of calcium carbonate deposition in the Nullarbor caves. The calcite samples, with one possible exception, have ages in excess of ca. 400000 yrs BP. This suggests that no significant amounts of calcium carbonate deposition have taken place during the last 400ka. At present, active deposition of speleothems is restricted almost entirely to gypsum and halite. The only gypsum speleothem dated was found to have a finite age of ca. 185 ka. Six dates on a small halite speleothem containing insect and arachnid remains indicate that it formed rapidly during Holocene time.  相似文献   

18.
Bristol Dry Lake, a 155 km2 continental-sabkha playa basin in the Mojave Desert of south eastern California, is filled with at least 300 m of interbedded terrigenous clastics, gypsum, anhydrite, and halite. Evaporite facies conform approximately to a bull's eye pattern with gypsum and anhydrite surrounding a basin centre accumulation of halite. Transects through Bristol Dry Lake, from the alluvial fan to the centre of the playa, reveal: (1) crudely-bedded, alluvial fan clastics interfingering with (2) playa-margin sand flat and wadi sand and silt, followed by (3) gypsum, anhydrite, chaotic mud halite, and clay of the saline mud flat, and (4) salt-pan halite beds. Terrigenous clastics were deposited in Bristol Dry Lake by sheetflow and by suspension settling from ponded floodwater. Some sediment has been reworked by aeolian processes to form barchan dunes around the playa margin. Thin nodular-like beds of anhydrite and several types of gypsum occur across most of the playa. Giant hopper-shaped halite cubes are suspended in saline mud flat facies, suggesting that they grew displacively in brine soaked sediment just below the surface. Thick beds (4 m) of halite, in the playa centre, may have formed through a complex alternating history of subaqueous and intrasedimentary precipitation under the influence of periodic floods, intense evaporation and brine-level lowering, and capillary discharge of brines. The stratigraphy in the playa centre is cyclic. An ideal cycle consists of: (1) chaotic mud halite at the base overlain by (2) green to red clay with abundant, giant hoppers, and at the top (3) red clay, gypsum, and anhydrite with flaser- to wavy-bedded sand and silt. This type of cycle probably records a gradual progradation of mud-flat facies over salt pans. Bristol Dry Lake sediments are nearly identical to some of the Permian evaporites of the Permian Basin region, U.S.A. and they can serve as modern analogues for ancient-sabkha facies analysis.  相似文献   

19.
古海水pH值代用指标——海洋碳酸盐硼同位素研究进展   总被引:1,自引:0,他引:1  
仪器测量的海水pH记录太短,无法评估海水pH自然变化的频率和幅度,并预测未来大气CO2急剧增加后海水酸度的响应。海相碳酸盐的硼同位素是目前恢复古海洋pH的有效途径,倍受古气候—环境学家的重视。评述了近年来海洋碳酸盐的硼同位素的最新研究成果和研究现状,重点探讨了海相碳酸盐的硼同位素的测定方法、硼同位素—pH模型和古海水pH恢复等前沿内容,旨在提供一个系统的海洋碳酸盐硼同位素—pH系统的基本概念及研究思路,以利于气候学、地质学界了解这一交叉领域的发展动态。  相似文献   

20.
The Muju area, located on the north–central margin of the Yeongnam Massif, mainly consists of Precambrian orthogneisses (granitic, leucogranitic, augen and dioritic gneisses) with minor migmatite. Zircon U–Pb dating indicates that the protoliths of the orthogneisses intruded at ca. 2.00–1.97 Ga and were metamorphosed at ca. 1.87–1.86 Ga. Magmatic zircon grains within the orthogneisses have positive to negative εHf(t) values (−7.63 to +3.3) and a Neoarchean two-stage model age (TDM2 = 2.78 Ga), indicating that the protoliths of most of the orthogneisses may have been derived from Archean crustal material. The results of geochemical analysis indicate that the protoliths of the orthogneisses formed by partial melting of metagraywacke and mafic igneous rocks in an arc-related tectonic setting. The intrusion ages and geochemical data of the Paleoproterozoic orthogneisses in the study area match well with those of Paleoproterozoic (ca. 2.00–1.97 Ga) orthogneisses in the northeastern Yeongnam Massif, indicating the presence of regional Paleoproterozoic subduction zones along the northern margin of the Yeongnam Massif at ca. 2.00–1.97 Ga. Meanwhile, ca. 2.00–1.97 Ga subduction-related magmatism has not been reported from the northern Gyeonggi and Nangrim Massifs in the Korean Peninsula or the Jiao–Liao–Ji belt in the eastern North China Craton, indicating that the Yeongnam Massif may not be correlatable with the northern Gyeonggi and Nangrim Massifs or the Jiao–Liao–Ji belt. The Yeongnam Massif may be correlated with the Cathaysia Block in the South China Craton and may have been located near Laurentia and the Siberian Craton within the Columbia supercontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号