首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Comparison of Traditional and Novel Polymeric Adsorbents with Regard to the Adsorption of 1,2-Dichloroethane from Water The adsorption of 1,2-dichloroethane from water onto traditional and novel polymeric adsorbents was studied in this publication. It was found that the novel (cross-linked) polymeric adsorbents have a higher loading than the traditional (not crosslinked) polymeric adsorbents. The main reason for that is the larger specific surface. There is no remarkable difference between the crosslinked and not crosslinked polymeric adsorbents due to the kinetics of adsorption.  相似文献   

2.
Investigations of the Adsorptive Separation of Volatile Chlorinated Hydrocarbons (VCHC) from Water with Humic Substance by Novel Polymeric Adsorbents and Activated Carbons. Part I: Isotherms and Kinetics of Adsorption The isotherms and kinetics of adsorption of different volatile chlorinated hydrocarbons (VCHC) (1,2-dichloroethane, 1,1,1-trichloroethane, trichloroethene) and a humic substance from water as well as these VCHC from water with humic substance onto novel polymeric adsorbents (WOFATIT EP 63, DOWEX XUS 43493 and XUS 43546, MACRONET MN 100 and MN 200) were studied in comparison to activated carbons (NORIT ROW 0.8 SUPRA, PRECOLITH BKK 3, HYDRAFFIN CG). It was determined that the novel polymeric adsorbents remove the VCHC well and the humic substance in contrast to the activated carbons only a few. The decrease of the equilibrium loading for the VCHC due to the presence of humic substance is at the activated carbons approximately double as high as at the novel polymeric adsorbents, whereas in the kinetics of adsorption no substantial influences of the humic substance on the mass transfer were determined.  相似文献   

3.
Investigations of the Adsorptive Separation of Volatile Chlorinated Hydrocarbons (VCHC) from Water with Humic Substance by Novel Polymeric Adsorbents and Activated Carbons. Part II: Dynamics of Adsorption In this publication, the dynamics of adsorption of different volatile chlorinated hydrocarbons (VCHC) (1,2-dichloroethane, 1,1,1-trichloroethane, trichloroethene) and a humic substance from water as well as of these VCHC from water with humic substance onto novel polymeric ad-[QJ][HR] sorbents (WOFATIT EP 63, DOWEX XUS 43493, MACRONET MN 100 and MN 200) was studied in comparison to activated carbons (NORIT ROW 0.8 SUPRA, PRECOLITH BKK 3, HYDRAFFIN CG). The obtained breakthrough curves and the following predicted characteristic values reveal that the polymeric adsorbents do not remove or remove the humic substance only with low adsorption capacity in contrast to the activated carbons. At the adsorption of the VCHC from water with humic substance it was determined that the influence of the humic substance on the adsorption capacity is substantially less on polymeric adsorbents than on activated carbons.  相似文献   

4.
Investigating adsorption of methyl parathion on the activated carbons Filtrasorb 400 and F 44 and on the adsorption polymer Wofatit Y 77 we found a stronger adsorption on the carbons at smaller concentration whereas the resin has the larger capacity at higher concentration. Adsorbents were regenerated through hydrolysis of the pesticide at pH = 11.7. The velocity of hydrolysis in the adsorbed state is reduced to a tenth of that in solution. However, a transport resistance in the pores of adsorbents seems to be negligible as may be concluded from the very small measured particle diameter dependence of the velocity constants. In adsorption-regeneration measurements the capacity of the adsorbents stabilized at about 70% of that of the fresh adsorbents.  相似文献   

5.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

6.
This study evaluates the performance of two low cost and high performance adsorption materials, i.e., activated carbon produced from two natural waste products: Bamboo and coconut shell, in the removal of three pesticides from drinking water sources. Due to the fact that bamboo and coconut shell are abundant and inexpensive materials in many parts of the world, they respond to the “low‐cost” aspect. The adsorption capacities of two local adsorbents have been compared with commercial activated carbon to explore their potential to respond to the “high quality” aspect. Two pesticides were selected, namely dieldrin and chlorpyrifos, because they are commonly used in agriculture activities, and may remain in high concentrations in surface water used as drinking water sources. The results indicate that the adsorption of pesticides on activated carbons is influenced by physico‐chemical properties of the activated carbon and the pesticides such as the presence of an aromatic ring, and their molar mass. The activated carbon produced from bamboo can be employed as low‐cost and high performance adsorbent, alternative to commercial activated carbon for the removal of pesticides during drinking water production. The performance of activated carbon from bamboo was better due to its relatively large macroporosity and planar surface. The effect of adsorbent and pesticide characteristics on the performance was derived from batch experiments in which the adsorption behavior was studied on the basis of Freundlich isotherms.  相似文献   

7.
The present work involves the study of Se(IV) adsorption onto granular activated carbon (GAC) and powdered activated carbon (PAC). The adsorbents are coated with ferric chloride solution for the effective removal of selenium. The physico-chemical characterization of the adsorbents is carried out using standard methods, e. g., proximate analysis, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), thermo-gravimetric (TGA) and differential thermal analysis (DTA), etc. The FTIR spectra of the GAC and PAC indicate the presence of various types of functional groups, e. g., free and hydrogen bonded OH groups, silanol groups (Si-OH), alkenes, and CO group stretching from aldehydes and ketones on the surface of adsorbents. Batch experiments are carried out to determine the effect of various factors such as adsorbent dose (w), initial pH, contact time (t), and temperature (T) on the adsorption process. The optimum GAC and PAC dosage is found to be 10 g/L and 8 g/L, respectively, for Se(IV) removal with C0 = 100 mg/L. The percent removal of Se(IV) increases with increasing adsorbent concentration, while removal per unit weight of adsorbent increases with decreasing adsorbent concentration. Se(IV) adsorption onto both the GAC and PAC adsorbents is high at low pH values, and decreases with increased initial pH. The results obtained are analyzed by various kinetic models. The parameters of pseudo-first order, pseudo-second order kinetics, and Weber-Morris intra particle kinetics are determined. It is seen that the sorption kinetics of Se(IV) onto GAC and PAC can be best represented by the pseudo-second order kinetic model.  相似文献   

8.
The effects of various parameters such as initial concentration, adsorbent loading, pH, and contact time on kinetics and equilibrium of adsorption of Cd2+ metal ion from its aqueous solution by castor seed hull (CSH) and also by activated carbon have been investigated by batch adsorption experiments. The amount of adsorption increases with initial metal ion concentration, contact time, solution pH, and the loading of adsorbent for both the systems. Kinetic experiments indicate that adsorption of cadmium metal ion on both CSH and on activated carbon consists of three steps – a rapid adsorption of cadmium metal ion, a transition phase, and an almost flat plateau region. This has also been confirmed by the intraparticle diffusion model. The lumped kinetic results show that the cadmium adsorption process follows a pseudo‐second order rate law. The kinetic parameters including the rate constant are determined at different initial metal ion concentrations, pH, amount, and type of adsorbent, respectively. The Langmuir and Freundlich adsorption isotherm models are used to describe the experimental data. The Langmuir model yields a better correlation coefficient than the other model. A comparison of the monolayer adsorption capacity (qm) of CSH, activated carbon, and several other reported adsorbents has been provided. The value of separation factor (RL) calculated from the Langmuir equation also gives an indication of favorable adsorption of the metal ion. From comparative studies, it has been found that CSH is a potentially attractive adsorbent than commercial activated carbon for cadmium metal ion (Cd2+) removal.  相似文献   

9.
The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A‐clay). GAC was of commercial grade where as the A‐clay was prepared by acid treatment of clay with 1 mol/L of H2SO4. Bulk densities of A‐clay and GAC were 1132 and 599 kg/m3, respectively. The surface areas were 358 m2/g for GAC and 90 m2/g for A‐clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A‐clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A‐clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm.  相似文献   

10.
Adsorptive removal of EDTA (ethylenediaminetetraacetic acid) from aqueous solution was studied using steam pyrolyzed activated carbon. Rubber wood sawdust, obtained from a local timber facility at Kodangavila, Trivandrum, Kerala, India was used as the precursor for the production of the activated carbon. Batch adsorption experiments were employed to monitor and optimize the removal process. The experimental parameters, i. e., solution pH, agitation time, initial EDTA concentration and adsorbent dosage, affecting the adsorption of EDTA onto sawdust activated carbon (SDAC) were optimized. The inner core mechanism for the interaction between EDTA and SDAC, which resulted in the adsorption process, was also discussed. The change in amount of EDTA adsorbed onto SDAC and CAC (commercial activated carbon) was compared over a wide range of pH (2.0–8.0). The maximum removal of EDTA took place in the pH range of 4.0–6.0 for SDAC and 5.0–5.5 for CAC, which demonstrates the effectiveness of the former adsorbent. Kinetic as well as equilibrium studies were performed to determine the rate constant and adsorption capacity, respectively. The adsorption kinetic data was fitted with pseudo‐first‐order kinetics and the equilibrium data was shown to follow the Langmuir isotherm model. These observations explain the formation of a monolayer of EDTA on the surface of SDAC as confirmed by the slow approach to equilibrium after 4 h of contact time. The adsorption capacity of SDAC for the removal of EDTA was 0.526 mmol/g and is seen to be greater than that of CAC and other reported adsorbents (0.193–0.439 mmol/g). Finally, it is clear that the production of steam pyrolyzed activated carbon in the presence of K2CO3 greatly enhanced EDTA removal and resulted in a product with possible commercial value for wastewater treatment strategies.  相似文献   

11.
Recent developments and future trends of waste water treatment by combined biochemical and adsorptive elimination steps are presented. Various mechanisms are discussed to explain the enhancement of conventional activated sludge systems by addition of different solid adsorbents. Special emphasis is given to the improvement of elimination capacity and operation stability caused by powdered or granular activated carbons. The results of laboratory experiments as well as large-scale applications suggest that combinations of biological systems with by-product carbonaceous materials are most likely to gain future importance in waste water treatment facilities.  相似文献   

12.
Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption–desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg2+ adsorption ability of samples was investigated. The results show that the Hg2+ adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction.  相似文献   

13.
In the present study, the vine stem and modified vine stem were used as low cost adsorbents for the removal of acidic and basic dyes from aqueous solutions. A comparative study was also carried out with activated carbon obtained from vine stem and then the adsorption capacities of all adsorbents were evaluated by batch adsorption process. The effects of various adsorption parameters (initial pH, particle size, and contact time) were investigated. The modification of the vine stem with nitric acid increased its adsorption capacity for the basic dye. Both, vine stem and modified vine stem exhibited higher adsorption capacities than activated carbon. The adsorption capacities were found to be 322.58, 250, and 200 mg g?1 for modified, natural vine stem, and activated carbon, respectively. In the case of acidic dye, the pH strongly affected the adsorption capacity and the maximum dye uptake was observed at pH 2 for all adsorbents. The acidic dye adsorption was lower compared to basic dye on both biosorbents and activated carbon tested. The maximum acidic dye adsorption values (58.82 and 59.88 mg g?1) were obtained with the vine stem and activated carbon, respectively. In the case of lignocellulosic adsorbents, both surface charge and surface groups had main effect on the adsorption of basic dye, while adsorption mechanism in activated carbon was mainly through the physical adsorption. The results of comparative adsorption capacity of adsorbents indicated that vine stem or modified vine stem can be used as a low cost alternative to activated carbon in aqueous solution for basic dye removal.  相似文献   

14.
The adsorption of fluoxetine onto activated carbons (ACs) prepared from almond tree pruning by steam and CO2 activation under different temperature conditions (650–950°C), was studied. In both series increasing the temperature caused an increase in the BET apparent surface area, yielding ACs with SBET up to 870 and 710 m2 g?1 after steam and CO2 activation, respectively. Also, a slight widening of the porosity was found in both cases. In order to modify the functionality of the ACs, two of them were impregnated with triethylenediamine (TEDA) prior to the adsorption process, which caused a decrease in the AC apparent surface mainly due to micropore blockage. The fluoxetine adsorption isotherms at 25°C showed maximum adsorption capacities between 110 and 224 mg g?1. The adsorption isotherms were analyzed using Langmuir and Freundlich models. Although the impregnation reduced the pore volume, it did not cause a decrease in the fluoxetine maximum adsorption capacity, but a modification in the adsorption mechanism was observed.  相似文献   

15.
In this study, graft copolymerization of itaconic acid (IA) and crotonic acid (CA) onto the crosslinked chitosan beads were carried out using ammonium persulfate as initiator. Grafted chitosan beads were characterized by FT‐IR analysis and grafting percentage determination. Grafting efficiency and add‐on percentages values of grafted chitosan beads were determined as 23–29 and 32–47%, respectively. Then, equilibrium isotherms and kinetics of brilliant green adsorption onto grafted chitosan beads were investigated. The results indicated that the pseudo‐second‐order kinetic model fitted better than the data obtained from pseudo‐first‐order model for the adsorption of brilliant green onto grafted chitosan beads. The fit of data for brilliant green (BG) adsorption onto grafted chitosan beads suggested that the Langmuir model gave closer fittings than the Freundlich model.  相似文献   

16.
Adsorption is of significant importance for effluent treatment, especially for the treatment of colored effluent generated from the dyeing and bleaching industries. Low cost adsorbents have gained attention over the decades as a means of achieving very high removal efficiencies to meet effluent discharge standards. The present article reports on batch investigations for color removal from aqueous solutions of Methylene Blue (MB) and Congo Red (CR) using Rice Husk Ash (RHA) as an alternative low cost adsorbent. The performance analysis was carried out as a function of various operating parameters, such as initial concentration of dye, adsorbent dose, contact time, shaker speed, interruption of shaking and ionic concentration. Performance studies revealed that a very high percentage removal of color was achievable for both dyes. The maximum percentage removal of MB was 99.939%, while 98.835% removal was observed for CR. These percentage removals were better than existing systems. Detailed data analysis indicated that adsorption of MB followed the Temkin isotherm, while CR followed the Freundlich isotherm. These isotherms were feasible within the framework of experimentation. Batch kinetic data, on the other hand, indicated that pseudo second order kinetics governed adsorption in both cases. Sensitivity analysis further indicated that the effects of initial dye concentration, shaker speed, pH and ionic strength had no noticeable effect on the percentage dye removal at equilibrium. Batch desorption studies revealed that 50% acetone solution was optimum for CR, while desorption of MB varied directly with acetone concentration.  相似文献   

17.
This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca2+ impregnated granular activated charcoal (GAC‐Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after ~24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC‐Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (qmax) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 µg/g.  相似文献   

18.
Preventing radioactive pollution is a troublesome problem but an urgent concern worldwide because radioactive substances cause serious health‐related hazards to human being. The adsorption method has been used for many years to concentrate and remove radioactive pollutants; selecting an adequate adsorbent is the key to the success of an adsorption‐based pollution abatement system. In Taiwan, all nuclear power plants use activated carbon as the adsorbent to treat radiation‐contaminated air emission. The activated carbon is entirely imported; its price and manufacturing technology are entirely controlled by international companies. Taiwan is rich in bamboo, which is one of the raw materials for high‐quality activated carbon. Thus, a less costly activated carbon with the same or even better adsorptive capability as the imported adsorbent can be made from bamboo. The objective of this research is to confirm the adsorptive characteristics and efficiency of the activated carbon made of Taiwan native bamboo for removing 131I gas from air in the laboratory. The study was conducted using new activated carbon module assembled for treating 131I‐contaminated air. The laboratory results reveal that the 131I removal efficiency for a single‐pass module is as high as 70%, and the overall efficiency is 100% for four single‐pass modules operated in series. The bamboo charcoal and bamboo activated carbon have suitable functional groups for adsorbing 131I and they have greater adsorption capacities than commercial activated carbons. Main mechanism is for trapping of radioiodine on impregnated charcoal, as a result of surface oxidation. When volatile radioiodine is trapped by potassium iodide‐impregnated bamboo charcoal, the iodo‐compound is first adsorbed on the charcoal surface, and then migrates to iodide ion sites where isotope exchange occurs.  相似文献   

19.
A series of chlorinated mesoporous activated carbons were derived from waste tires by pyrolysis, activation, and chlorination at different temperatures. The physical and chemical properties of the samples were studied by Brunauer–Emmett–Teller (BET) analysis, Fourier Transform IR Spectroscopy (FT‐IR), point of zero charge measurement, thermogravimetric analysis, and by testing their behavior as adsorbents for toluene removal. Our results showed that the tire‐derived activated carbon samples have highly mesoporous volumes and surface areas, and chlorination treatment has a slight effect on the pore structure. Lewis acidity of the sample increases after chlorination and the chlorine content increases from 0.24 to 2.32% with chlorination temperature increasing from 50 to 400°C. The higher the chlorine content, the more is the toluene adsorption. In comparison with the commercial carbon (F‐400), all the samples have significantly higher adsorption capacity for toluene due to the presence of mesopores, inductive effect of the partial positive chemisorbed chlorine and resonance effects of C? Cl structures. The mesopores probably render easier diffusion of toluene molecule to inner carbon matrix and the strong π–π interaction between toluene and C? Cl resonance structure in the carbon significantly affects the interplay bonding process thus enhances the toluene removal.  相似文献   

20.
The deterioration of sediments is a serious environmental problem. Controlling nutrient release fluxes from sediments is important to alleviating eutrophication and to reducing terrigenous nutrient loads. The purpose of this study was to evaluate the phosphate removal performance of granulated coal ash (GCA) from seawater, which is produced from coal thermal electric power generation. Batch experiments were carried out to investigate the removal kinetics of phosphate from seawater under both oxic and anoxic conditions. Phosphate was removed well from seawater under both oxic and anoxic conditions. The adsorption isotherm for phosphate revealed that GCA could remove phosphate effectively from seawater above a concentration of 1.7 μmol L−1. GCA can reduce the concentration of phosphate in seawater effectively under anoxic conditions where iron type adsorbents cannot be applied. Therefore, GCA could potentially be used to adsorb phosphate in the organically-enriched sediment, which generally occurs under highly reductive conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号