共查询到20条相似文献,搜索用时 15 毫秒
1.
胡荣明任乐宽苏瑞鹏米晓梅 《测绘科学》2023,(1):39-48
针对高分辨率遥感影像信息复杂浅层网络难以对其目标物特征信息充分学习,图像因裁剪导致边缘信息损失使得模型对图像边缘预测效果较差的问题,该文将U-Net收缩路径加深以增强网络对特征信息的学习能力,并加入随机失活函数(Dropout)层抑制过拟合现象的发生,扩张路径中加入批量归一化层以提高网络训练速度,并将忽略边缘交叉熵函数与骰子函数结合构建联合损失函数作为本文模型的损失函数以提高模型对图像边缘的预测效果。实验结果表明:该文方法对建筑物边缘能够进行有效预测;对建筑物轮廓以及较小建筑物的提取较之SVM、主干网络为VGG的U-Net提取效果有所提高;并在应用扩展研究数据集中有着较好的表现。 相似文献
3.
针对经典深度学习语义分割网络对建筑物提取存在精度较低、边界模糊和小目标识别困难的问题,本文提出一种增强注意力门控的U型网络(advanced attention gate U-Net,AA_UNet)用于改善建筑物提取的效果,该网络改进经典U-Net的结构,使用VGG16作为主干特征提取网络、注意力门控模块参与跳跃连接、双线性插值法代替反卷积进行上采样.实验采用武汉大学建筑物数据集(WHU building dataset,WHD)对比提出的网络与部分经典语义分割网络的提取效果,并探究网络改进的各个模块对提取效果的影响.结果显示:该网络对建筑物提取的总精度、交并比、查准率、召回率和F1分数分别为98.78%、89.71%、93.30%、95.89%、94.58%,各项评价指标均优于经典语义分割网络,且改进的各个模块有效提高了提取精度,改善了建筑物轮廓不清晰和小目标建筑物破碎的问题,可用于精准提取高分辨率遥感影像中的建筑物信息,对城市规划、土地利用、生产生活、军事侦察等具有指导意义. 相似文献
4.
5.
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN(Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE(Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。 相似文献
6.
7.
传统基于遥感光谱和空间特征信息提取、图像分割与分类的方法在面向背景复杂、人工地物繁多的影像时存在泛化能力较差的缺陷,即训练后的模型或规则难以适用不同地区、不同数据源的遥感影像,深度学习比以往分类模型在泛化能力方面表现出强大的潜力。本文选取不同区域、不同类型的遥感卫星影像作为试验对象,结合该区域的地理国情监测成果数据和1︰1万基础地理信息数据,进行遥感影像样本标注及样本增强扩充,构建大规模遥感影像基准数据集;然后基于U-Net全卷积神经网络,综合利用二分类和多分类语义分割网络模型,引入jaccard系数,对道路和房屋这两类人工建筑物目标进行了提取。通过与传统浅层分类方法进行精度对比,本文方法总体精度提升8.82%,Kappa系数提升79.54%,道路和房屋目标的F1值均高出70%,IUO指标高出了100%。分析表明:(1)地理国情监测成果和1︰1万基础地理信息数据在构建大规模的语义分割数据集中具有重要作用;(2)U-Net全卷积神经网络方法能够快速、准确地提取出道路和房屋,且具有很好的泛化能力,能够满足宏观尺度的人工地物提取需求,同时提升处理效率。 相似文献
8.
建筑物规模及其分布是衡量一个地区经济社会发展状况的关键指标,因此研究基于遥感影像的建筑物提取具有重要意义。现有神经网络方法在建筑物提取的完整度、边缘精确度等方面仍存在不足,由此提出一种基于高分遥感影像的多层次特征融合网络(multi-level feature fusion network,MFFNet)。首先,利用边缘检测算子提升网络对建筑物边界的识别能力,同时借助多路径卷积融合模块多个维度提取建筑物特征,并引入大感受野卷积模块解决感受野大小对特征提取的限制问题;然后,对提取的特征进行融合,利用卷积注意力模块进行压缩,经金字塔池化进一步挖掘全局特征,从而实现建筑物的高精度提取。并与当前主流的UNet、PSPNet(pyramid scene parsing network)、多路径特征融合网络(multi attending path neural network, MAPNet)和MDNNet(multiscale-feature fusion deep neural networks with dilated convolution)方法进行对比,使用亚米级的武汉大学航空影像数据... 相似文献
9.
10.
提出一种建筑物自动化提取架构,基于DeepLabv3+网络模型,使用WHU建筑物数据集,完成数据集增强、模型训练、建筑物提取以及精度评估。实验表明,架构中DeepLabv3+模型分类的总体精度为96.3%、准确度为94.2%、召回率为92.5%、F1得分为93.3%、交并比为87.5%,优于基于像素的分类方法(支持向量机、K均值聚类算法(K-Means))和面向对象的分类方法(最邻近节点算法(KNN)、分析与回归树)以及基于深度学习的分类方法(UNet、SegNet、PSPNet)。文中构建的高分辨率遥感影像建筑物自动化提取模式,可以完成建筑物高精度高效率的提取任务。 相似文献
11.
高分辨率遥感影像的数据源日益增长使得其成为主要的遥感数据源之一。本文研究了一种基于AlexNet网络的高分辨率遥感影像建筑物提取方法,该方法是在卷积神经网络的基础上,建立一种端到端自动提取影像中建筑等物体位置的方法:首先使用图像增广技术增加数据集的丰富性和多样性;再通过超参数搜索选择网络使用的较优参数,最终实现了遥感影像中建筑物的自动提取。实验结果表明,该方法可达到75%的提取精度;与传统方法进行定性和定量对比,该方法具有耗时少、精度高的特性,对后续城市规划、三维建模等应用有着重要意义。 相似文献
12.
13.
针对从遥感影像上提取道路出现的细节特征丢失、提取结果模糊的问题,该文提出了一种基于空洞卷积U-Net的遥感影像道路提取算法:①以U-Net为基础网络,将低层细节特征与高层语义特征进行多特征融合,更好地还原道路目标细节;②为了进一步提高网络对道路细节特征的识别能力,在U-Net中引入空洞卷积模块,学习更多的语义信息来改善提取结果出现的模糊问题.在Massachusetts roads和高分辨率城市道路影像Cheng roads dataset数据集下的实验结果表明,在召回率、精度和F1-score指标分别达到了82.5%、86.7%、84.5%;93.2%、92.1%、92.6%.与基础的U-Net相比,该算法在解决细节特征丢失和提取结果模糊问题方面更具有应用价值. 相似文献
14.
利用高分辨率遥感影像提取建筑物是目前研究热点之一,但由于建筑物颜色各异、形状大小不同、细节繁多,提取结果普遍存在边缘模糊、转角圆滑和细节丢失等问题。本文提出一种基于空洞卷积的E-Unet深度学习网络。在E-Unet的结构设计中,引入跳跃连接以减少边缘和转角的细节损失;采用新设计的卷积模块,使其扩大感受野的同时减少参数量;底层增加Dropout模块避免网络发生过拟合现象;遥感影像输入网络前先进行直方图均衡化、高斯双边滤波和波段间比值运算,然后合并为多波段张量输入模型(不转换为灰度图像)。为验证网络性能、明确性能提升的原因,本文在Massachusetts和WHU建筑物数据集上设计了两组试验。第1组是E-Unet、Unet和Res-net 3种网络的对比试验,结果表明E-Unet不仅精度评价结果优于Unet和Res-net,而且建筑物边角的细节被完整提取。第2组是消融试验,目的是明确预处理模块对提取精度的提升效果,结果表明预处理模块能提升不同网络提取精度。通过这两组试验证明了预处理模块的有效性和本文提出网络的优越性。 相似文献
15.
针对在遥感影像的建筑物提取过程中,建筑物密集且离散分布带来提取效果一般的问题,采用一种特征信息增强的U-net网络.模型使用MobileNet主干网络做编码器,用于影像的建筑物特征提取,考虑到下采样时低维信息逐渐丢失,以致边缘提取效果不佳,网络结合形态学的膨胀和闭运算优化提取结果的精度.实验结果表明,在多场景高分辨率的武汉大学遥感影像建筑物数据集上,结合形态学后处理的M-Unet(MobileNet U-net)提取结果不仅在视觉效果上表现优异,而且在精确度、召回率、F1-score、平均交并比MIou(Mean Intersection overunion)4个指标上分别达到96.2%、76.6%、84.6%和74.5%,均优于相同主干网络下的Pspnet和Segnet. 相似文献
16.
高分辨率遥感影像地物复杂,分类难度大,而深度学习方法可以提取地物更多更深层次的特征信息,适用于高分辨率遥感影像的地物分类。本文研究对高分辨率影像中不透水地面、建筑、低矮植被、树、车辆等地物的高精度分类。结合遥感多地物分类的特点,以DeepLab v3+网络模型为基础,提出E-DeepLab网络模型。主要改进为:(1)改进编码器和解码器的结合方式,使用简洁有效的加成连接方式。(2)缩小单次上采样倍数,增加上采样层,提高编码器与解码器连接的紧密性。(3)使用改进的自适应权重损失函数,自动调节地物损失权重。同时根据数据特点,提出结合DSM、NDVI数据等多通道训练方式。使用两个地区数据进行实验,结果表明,两地区精度均明显优于原始DeepLab v3+模型和其他相关模型,Potsdam地区总体提取精度达到93.2%,建筑物提取精度达到97.8%,Vaihingen地区总体提取精度达到90.7%,建筑物提取精度达到96.3%。目视对比分类图和标准标记图,两者具有高度的一致性。本文所提出的E-DeepLab网络在高分辨率遥感影像地物高精度提取和分类中有较好的应用价值。 相似文献
17.
针对传统的建筑物提取方法精度较低和边界不完整等问题,本文提出基于深度学习的高分辨率遥感影像建筑物提取方法。首先,采用主成分变换非监督预训练网络结构,获得待提取遥感影像特征。其次,为减少在池化过程中影像特征信息的丢失,提出自适应池化模型,通过非下采样轮廓波变换来获取影像纹理特征,并将纹理特征输入网络中参与建筑物提取。最后,将影像特征输入softmax分类器进行分类,获得建筑物提取结果。选取典型区域进行建筑物提取试验,并与典型建筑物提取方法进行对比分析,结果表明,本文提取方法精度高,并且提取建筑物的边界清晰、完整。 相似文献
18.
目前,深度学习在高分辨率遥感影像水体提取方面的应用已成为遥感领域的研究热点。其中基于U-Net网络的算法在水体提取中表现出较好的性能,但鲜有研究对不同U-Net网络算法在水体提取任务中的性能差异进行深入比较。因此,本文选择U-Net、U-Net++和Attention-U-Net 3种卷积神经网络,基于GID数据集,进行试验与定量分析。结果表明:U-Net++的训练精度最高,其次为U-Net、Attention-U-Net,三者分别为0.912、0.907、0.899;U-Net++的边缘提取能力优于其他两种网络;在分割不同类型水体和区分遥感影像中与水体区域相似的非水体区域上,U-Net++的提取效果显著,U-Net和Attention-U-Net易出现漏提现象,效果欠佳。 相似文献
19.
房屋建筑物作为人类活动的主要场所,快速准确地将其从高分辨率遥感影像中提取出来,对促进遥感信息在防灾减灾、城镇管理等方面的应用具有重要意义。本文基于深度学习,提出了高分辨率遥感影像房屋建筑物像素级精确提取方法。首先,针对样本图像边缘像素特征不足现象,以U-Net模型为基础提出IEU-Net模型,设计了全新的忽略边缘交叉熵函数IELoss并将其作为损失函数,另外添加Dropout和BN层在避免过拟合的同时提高模型训练速度和鲁棒性。其次,为解决模型特征丰富度有限的问题,引入形态学建筑物指数MBI,与遥感影像RGB波段一同参与到模型的分类过程。最后,在模型预测时与IELoss相对应采用忽略边缘预测策略从而获得最佳建筑物提取结果。实验对比分析表明:本文方法能有效克服样本边缘像素特征不足问题并抑制道路、建筑物阴影对结果的影响,提升高分辨率遥感影像中房屋建筑物的提取精度。 相似文献
20.
由于农村建筑物结构多样、空间分布复杂等特征,自动提取面临较多困难。针对该问题,本文提出采用膨胀卷积和金字塔池化表达的神经网络模型用于遥感影像中农村建筑物自动提取。在膨胀卷积神经网络模块中,通过改变孔尺寸的大小,获取不同感受野的特征信息;在金字塔表达方面,每个模块输入不同尺度的信息,且同时下采样的倍率也不同,获取多维的金字塔尺度特征;最终将提取的浅层及深层尺度特征信息进行融合,构建一个改进的适用于农村建筑物目标自动提取的深度学习模型。试验结果表明,与FCN-8s和DeepLab模型提取的结果相比,本文方法在农村建筑物提取中表现较好的性能,提取精度明显提高,且更好保留了目标边界细节信息,减少了噪声。 相似文献