首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
1984年2月25日,日面爆发了一个高能大耀斑。我们取得了该耀斑过程的光球黑子活动区强磁场以及黑子、H_α色球等光学资料。分析表明:1.这种高能大耀斑是产生在有黑子剪切运动、新浮磁流和磁场梯度大的磁中性线(H_n=0)两侧;2.耀斑发展到极大前后,不但会掩盖部分后随黑子半影,而且还会进一步掩盖这些后随黑子本影;3.在高能大耀斑爆发过程中,相应的光球黑子活动区的强磁场会出现变化,磁通量增长率为1.0×10~8韦伯/秒,磁场梯度最大为0.2高斯/公里;4.黑子间的相对运动速度最大可达0.3公里/秒。  相似文献   

2.
本文研究了22周中的9个强质子耀斑活动区的共同特征,研究结果表明:单个团状结构黑子,即众多异极性黑子本影核紧锁在同一半影结构中的δ型黑子是强质子耀斑活动区的典型形态特征。黑子群的旋转是质子耀斑活动区的又一重要特征,黑子群的旋转方向与日面南、北半球无关。强质子耀斑的爆发总是在黑子群旋转角度达到正或负相极大之后出现。质子耀斑后,磁绳的松弛,黑子群可能会出现反向旋转,强的剪切过程和质子耀斑可能会再度出现。  相似文献   

3.
本文分析了廿一周峰年期间云南天文台观测到的廿个无黑子区耀斑,得到如下结果: 1.无黑子区耀斑的一般特征是:1) 无黑子区耀斑的自然产率约3%,2) 其卡林顿经度分布有向东飘移的趋势,3) 无黑子区的耀斑多为低能耀斑,4) 无黑子区耀斑产生的背景条件和黑子区耀斑一样,必须在耀斑区的太阳大气中存在异极性磁场结构。无黑子区耀斑都发生在沿大尺度磁场中性线(H_=0)延伸的暗条两侧或其附近。 2.在耀斑前,由于磁场的扰动,使被浮托在H_=0线上的宁静暗条在耀斑前几小时到一两天激活,临近耀斑位置的一段暗条先是发展增大,同时伴随着谱斑增亮,在耀斑爆发前几分钟或与耀斑发展的同时,该暗条迅速衰减乃至完全消失。与此同时,有的无黑子活动区的可见纤维与暗条的交角由大变小,表明活动区所受的力由挤压力逐渐转化为剪切力。本文还粗略地估计了无黑子区耀斑的能量。  相似文献   

4.
Boulder88161(AR5060)黑子群是1988年所有黑子群中最大的一群,后随部分有一δ型黑子F3。图1为7月2日的白光照片。 1、光学耀斑:(1)S级小耀斑数在28日最大,之后几天逐步下降,但仍保持在每天3~5个。(2)X-射线强度与S级耀斑个数基本一致。M级事件与1,2,3级耀斑相对应。(3)射电流量曲线与耀斑的1,2,3级个数相对应。 2、黑子群的纵向磁场演化:纵向场结构变化十分明显。浮现磁通逐渐变强,梯度最大为0.4~0.5G/Km,在耀斑处为<0.35G/Km。对耀斑处磁通量逐日上升。在耀斑前几天上升很快。黑子群横向场:在3B级耀斑处横向场很弱,尤其在耀斑的位置上。而在黑子后随部分有很强的横向场存在。 3、耀斑的发生过程:7月2日的3B级耀斑约从0030UT开始,0056UT极大,约一个多小时后才消失。此处中性线扭曲,形成一种湾形结构。一条横躺的S形暗条勾出了中性线形状。另有一束很粗的暗条从这一区域出发与黑子后随部分相连。耀斑初始是由S形暗条西端开始发亮的。约5分钟后后随部分有增亮,8分钟后消失。在S形暗条处耀斑增亮达到极大,形状是沿着中性线和暗条走向的。达到最大面积时,发亮区域覆盖了S极性区。 分析:88161是一个非常活跃的新生黑子群。后随部分磁场复杂多变,而大的耀斑并没有发生在那里。其原因:(1)大耀斑不同于小耀斑,  相似文献   

5.
在国际太阳活动峰年期间,云南天文台观测到80—575号活动区,日面坐标S12L97,过中经日期11月11.7日,从11月5日到17日连续观测13天。 该活动区在日面通过期间,频繁地爆发耀斑,其中有一部分耀斑有强烈的x-线和短波突然中断事件相伴生。11月6日0542UT.,发生的一个X9/3B级耀斑伴生的X级x-线事件,强烈程度仅次于1978年7月11日的那次。 该活动区的形态特征之一是它的黑子群为第21太阳活动周以来面积最大的一群。它是云台80—529老活动的回归黑子群,许多新黑子在老黑子的周围浮现,从而变成一个非常复杂的FKC型黑子群,面积大,磁场梯度大,具有δ-结构。全群的平均磁场强度约为2000高斯,在几个主黑子中测量到最大磁场为3300高斯。 这个复杂的黑子群中,观测到了强烈的运动、旋转,分离,合并和黑子间的相互作用。老黑子中发现一个反常光桥,它是在两个本影合并起来时形成,而不象通常在黑子将分裂时出现。  相似文献   

6.
本文对8个活动区极性反转线(中性线)附近黑子半影纤维的形态进行了分析得出:1)具有强δ磁结构的活动区,穿过主要异极性黑子间的中性线近旁半影纤维或多或少地与中性线平行(交角小于30°),有关黑子半影呈旋涡形态;2)由新浮现发展形成的δ结构区,异级黑子在大黑子边缘或与大.黑子本影之间有一段距离,中性线两边的半影纤维有序排列,走向与中性线斜交,有关黑子呈弱的旋涡形态。3)对于较稳定的极群,N、S极性间的宽窄不一的半影稀疏区,中性线沿该区经过,两旁半影松散齿状,走向与中性线大体垂直,相反极性本影间距较远。  相似文献   

7.
黑子群快速的旋转(先反时针转,后顺时针转,质子耀斑前1—2天内旋转角度最大)、活动区强的SVC辐射、以及SVC和爆发峰值流量频谱的极大始终在8800MHz附近等与质子耀斑密切相关。同极性磁形中浮现或消失具有反极性的新磁流区域、磁场  相似文献   

8.
我们利用北京天文台太阳磁场望远镜在1983年投入试观测期间取得的资料,对该年6月份的一群黑子的磁场以及耀斑作了综合分析,得到一些结论。以光球纵场为边界条件,计算了常α无力场。根据挤压无力场耀斑模式,我们认为耀斑爆发的能量,来自异极性黑子的相互靠近。磁中性线的扭曲程度,反映了无力场的状态。  相似文献   

9.
本文研究结果表明:同一黑子群在日面期间的顺或反时针方向的旋转运动会先后并存.质子耀斑前1~2无,黑子群的旋转角速度达到极大.耀斑后,磁绳的松弛,黑子群可能会反向旋转,强的剪切过程和质子耀斑可能会再度出现.强质子耀斑活动区的共同特征是:(1)形态为单个团状结构δ型黑子,即众多异极性本影核紧锁在同一黑子半影中;(2)黑子面积>1000×10-6半球面积,日面跨度>10°;(3)黑子群都有快速的旋转运动.这类活动区,如果在日面西部活动性明显地增强,那么这个活动区在未来转到日面边缘及其背后、或再次从日面东边缘转出时,定能再次爆发耀斑和伴随较强质子事件。  相似文献   

10.
本文分析了云台78126活动区的五天的磁场等高斯图资料后得出,倒置的磁极性排列和纵场中性线变得迂回曲折与高能质子耀斑爆发紧密相关。在耀斑爆发后,无论是磁极性排列和纵场中性线都趋于相对稳定状态。我们发现,活动区的净磁通量φ在4月28—30日期间有急剧的变化,而在这期间发生了二个重大耀斑。我们猜想,可能是磁通量的迅速变化引起的强大电动势造成了电子和质子加速的条件。分析了耀斑结点在磁图中的分布后得出;本活动区的耀斑亮点大多数离中性线区域较远,而出现在中性线附近的亮结点,可以大致分为两种情形,一种是在中性线两侧的磁场梯度很大且具有相反电流密度的区域;另一种是出现在磁场的“中性点”附近。  相似文献   

11.
AR6659是22周以来最重要的一个活动区,它爆发了22周最强大的高能事件。本文用云南天文台的光球、色球精细结构照片和北京天文台怀柔站的磁场速度场资料,分析了该活动区磁场速度场的二维位形和大耀斑期间的演化特征。本文分析的4个大耀斑均爆发在中性线附近的N极区磁场梯度大的地方及色球速度场的红移区。偏带观测也显示耀斑物质是向红端移动的。耀斑波沿横场传播在离本黑子群几万至十几万公里的地方激起感生耀斑,在原生耀斑与感生耀斑之间往往有耀斑环相连。此外,本文还从演化特征出发分析了耀斑爆发前活动区等离子体的宏观不稳定性。  相似文献   

12.
磁极性反转线附近黑子半影纤维的形态   总被引:3,自引:3,他引:0  
本文对8个活动区极性反转线附近黑子半影纤维的形态进行了分析得出:1)具有强δ磁结构的活动区,穿过主要异极性黑子间的中性线近旁半影纤维或多或少地与中性线平行,有关黑子半影呈肇涡形态;2)由新浮现发展形成的δ结构区,异级黑子在大黑子边缘或与大黑子本影之间有一段距离,中性线两边的半影纤维有序排列,走向与中性线斜交,有关黑子呈弱的施  相似文献   

13.
这群黑子于1988年4月13日出现在日面的东边缘。怀柔编号:88037; Boulder编号4990。日面位置N22,L314。其磁场极性较为复杂,17日在后随主黑子的右上方爆发一次较大的耀斑,尔后在18日、20日和21日在前导与后随之间又不断有些小的耀斑爆发.在此期间,怀柔太阳磁场望远镜取得了光球纵向磁场、光球5324A的单色象、H_β的耀斑单色像和H_β视向磁场的大量资料。 16日后随主黑子右上方有一分立的小黑子(S极),17日,耀斑就产生在它们之间(图1中的圆圈表示耀斑发生的位置)。从图2a、b可以看到,这里的极性复杂,异极性磁区互相挤压。耀斑发生在B_(11)=0的磁场中性线一侧,同样是避开了黑子的本影。这与已有的结论是相一致的。对比16日(图2a)和17日(图2b)的纵场磁图,可以看到在标有1和2的地方分别有一N极在向S极挤压。17日N极把S极分割开来。在2处,N极本来是互相连接的,但其临近的S极亦不断向其挤压渗透,耀斑前,S极把N极给断开了。在这些地方,17日UT0423时,爆发了耀斑,UT0430时,耀斑达到极大,可以看出,耀斑的亮核位于异极区挤压的前峰。耀斑发生的位置的纵场梯度为0.18G/Km。后随黑子的右上方,耀斑爆发前(图2a)其最大磁场强度为640G,爆发后(图2c)最大磁场强度为160G。这表明爆发的过程也是能量释放的过程。 虽然耀斑的单  相似文献   

14.
AR6659是22周以来最重要的一个活动区,它爆发了22周最强大的高能事件。本文用云南天文台的光球、色球精细结构照片和北京天文台怀柔站的磁场速度场资料,分析了该活动区磁场速度场的二维位形和大耀斑期间的演化特征,本文分析的4个大耀斑均爆发在中性线附近的N极区磁场梯度大的地方及色球速度场的红移区,偏带观测也显示耀斑物质是向红端移动的。耀斑波沿横场传播在离本黑子群几万至十几万公里的地方激起感生耀斑,在原  相似文献   

15.
用我国第一台高分辨光球——色球望远镜所取得的AR4811的高空间分辨(≤1″)的黑子和Hα色球照相资料分析了该活动区的精细结构的演化特征及有关耀斑活动。指出:(1)和当地原有磁场极性相同的新磁流的浮现在黑子群演化过程中起着阶段性的重要作用,但对活动区耀斑活动贡献不大。(2)有关暗条的各种频繁活动是当地耀斑的一种先兆。(3)活动区中相反极性磁场的相互挤压、剪切和旋转同时存在,是一个2B/M1.3级等一系列耀斑可能的储能机制。而与当地原有磁场极性相反的磁流环的浮现,是2B/M1.3级耀斑的可能触发因素。  相似文献   

16.
本文对1980年10月15日产生在小黑子区的3级大耀斑作了详细的形态分析,,结果表明:1)耀斑无闪相,耀斑的最大强度为周围来扰区的2.4倍。2)耀斑有M带结构,双带的分离速度为5公里/秒。3)和耀斑有关的暗条位于大尺度磁场的极性分界线上,它在耀斑前和耀斑期间有明显变化,最终全部消失。4)耀斑的微波爆发增量小,上升下降缓慢,米波段有Ⅱ、Ⅲ、Ⅳ型爆发。5)耀斑的x射线辐射引起电离层2级骚扰(SLD)。耀斑无地磁暴对应。6)产生耀斑的活动区在日面存在3周,耀斑产生在活动区的衰亡阶段。以上结果基本与文献相同。 在本文的最后一节,对无黑子或小黑子区的耀斑形成作了简短的讨论,指出由日珥物质下落形成大耀斑所遇到的能量亏缺;日珥物质下落形成的激波,由于磁场的存在而强度削弱,磁场不能通过激波转化为辐射能;无黑子(或小黑子)区的耀斑的形成,在机理上可能与黑子区形成的耀斑类同。  相似文献   

17.
本文在综合分析质子耀斑活动区观测特点的基础上,指出在密集的多极黑子构成的局部区域中,同极黑子分裂,互相排斥,异极黑子相互靠近,向异极区中场强较弱部分的挤压和渗入,是一大批质子耀斑活动区的共同特点.这种黑子间的相对运动,使中性线严重扭曲,呈现出质子耀斑活动区特有的“S”型。根据这些观测特点,寻找到了一种定量估计无力因子的方法。对三个典型的质子耀斑活动区估计了无力因子的变化,并在常无力因子的假定下进行了无力场结构和势场磁能的计算。计算表明质子耀斑发生前无力因子逐渐增加,而势场磁能逐渐减小,减少的势场能量可能正是无力场得到发展的能源,足够质子耀斑的需要。  相似文献   

18.
对十个活动区出现的卫星黑子进行分析,据它们不同的形态、发展状况及在耀斑活动中的作用大致分成三种类型。结果表明,高能耀斑与卫星黑子有密切关系。随着卫星黑子的出现,发展在活动区中可经常产生耀斑。如果卫星黑子是静止的,通常没有耀斑爆发。  相似文献   

19.
对十个活动区出现的卫星黑子进行分析,据它们不同的形态,发展状况及在耀斑活动中的作用大致分成三种类型。结果表明,高能耀斑与卫星黑子有密切关系。随着卫星黑子的出现,发展在活动区中可经常产生耀斑。如果卫星黑子是静止的,通常没有耀斑爆发。  相似文献   

20.
1989年1月14日AR5312(怀柔编号89009)活动区,产生了一个2B级耀斑。该活动区经纬度为L306、S32,黑子群磁场分类为δ型。耀斑开始时间为0202UT,结束为0534UT,持续了3个多小时。北京天文台磁场望远镜,得到了一系列较完整的高分辨磁场及速度场资料,包括光球5324A的矢量磁场图和色球4861A的纵向磁场图(图1、2)。从耀斑前后的磁图得到以下结果: 1、耀斑初始亮点位于纵向磁场中性线附近高度剪切区域(见图1B区)、新浮磁流区(图2D区)以及双极磁结构对消区。前两种区域均能形成电流片,并且引起磁流体不稳定性,从而激发耀斑,但对消区和耀斑的关系不是很清楚,有待于理论工作者进一步探讨。 2、耀斑极大时间过后,光球和色球H_(11)=0线附近纵场梯度均有明显下降。 3、在强剪切区域(图1B区),5324A横向磁场和H_(11)=0线之间的夹角在耀斑极大时间过后有明显增大,该现象表明磁能释放后,磁场剪切缓解。 4、耀斑初始亮点产生后磁场高度剪切区、新浮磁流区和双极对消区,其触发耀斑的作用和周围的磁场环境有密切关系,特别是象具有磁海湾结构这样的活动区,似乎更容易产生耀斑。 5. 该活动区色球磁场位形,较光球磁场位形复杂,主要表现在:色球的纵场出现了一些磁弧岛结构,其原因可能是光球之上的磁力线高度剪切区及扭绞所致。0411  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号