首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
台风Wayne过后南海北部陆架海域的近惯性振荡   总被引:6,自引:0,他引:6  
1986年8月18日8616号台风维纳(Wayne)在南海中部生成,其后在南海北部迂回盘旋,前后3次穿越巴士海峡,9月4日在海南岛登陆。布放在海南岛东部陆架上的锚系浮标记录了台风中心过境前后风和近表层的海流响应。分析结果表明,台风中心过境造成海水强烈的近惯性运动,其影响大约持续了6—8d,近惯性振荡的频率为0.029 2周.h-1(周期约34.2h),高出当地的惯性振荡频率(0.028cph)4.3%。带通滤波所提取的惯性运动特征显示,台风过境后惯性振荡逐渐衰减,惯性圆逐渐向西南方向偏移。根据这一个例,探讨了台风条件下近表层流速与风速的关系以及台风尾迹中近惯性流流速衰减过程的经验描述,可为近海海洋工程设计提供参考。  相似文献   

3.
基于2014年8-9月南海北部东沙群岛附近海域两个临近站位(站位A,20.736°N,117.745°E,水深1 249 m;站位B,20.835°N,117.56°E,水深848 m)的潜标数据,研究了台风过境所激发的近惯性振荡的特征,分析了中尺度暖涡对近惯性频率的调制及其对近惯性动能分布和传播的影响。站位A(B)142(175) m以浅,近惯性频率由0.710 1(0.713 3)周/d红移至0.659 2周/d,频率减小了7.2%(7.6%),观测结果与两个站位所处的背景涡度相吻合。中尺度暖涡改变了水体层结状态,两个站位的近惯性动能在不同层结中被改变了0.5~3倍。水体层结对能量的折射作用使得站位B的近惯性动能在深度158~223 m之间衰减较少,而站位A的近惯性动能则随着深度的增加快速减小。站位A和站位B近惯性内波的垂向群速度分别约为15.2 m/d和14.1 m/d。如果忽略近惯性动能的水平辐散,近惯性内波的垂向传播分别造成了两个站位垂向上约47%和38%的近惯性动能衰减。  相似文献   

4.
By treating observations involving long-term buoy moorings, numerical characteristics of the periods, amplitudes, phases and orbits of inertial currents in some Black Sea areas have been obtained. The inertial component's contribution to the total velocity field and turbulent exchange has been determined. As a result, the maximal heights of the internal waves generated by the inertial currents have been estimated. Translated by Vladimir A. Puchkin.  相似文献   

5.
We analyze oscillations of the Black Sea level at 43 points in the north part of the coast. At some points, the data of every-day measurements are accumulated for more than 100 years. Actually, at all points with minor exceptions, we observe a general trend toward an increase in the sea level. The amplitude of oscillations of the sea level about the average trend obeys a normal distribution. We determine numerical characteristics of this distribution. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

6.
On the basis of the results obtained by using the PRECIS regional climate model with high space resolution (25 km), we study the mesoscale specific features of the atmospheric circulation in the Black-Sea region for a period of 30 yr. To separate and trace the subsynoptic eddies, we use a method based on the Okubo–Weiss criterion. Several types of cyclonic eddies are selected and described: winter Caucasian coastal eddies, summer Caucasian separated eddies, cyclonic eddies of the open sea, and seldom quasitropical cyclones. For various types of eddies, we present the statistics of their lifetime and intensity and the histograms of diurnal and seasonal cycles.  相似文献   

7.
The analysis of inertial oscillations on the Gelendzhik shelf of the Black Sea is presented. Spectral characteristics of the current fields are studied based on the measurements taken by the acoustic Doppler current profiler. Strong variability of the inertial oscillation hodographs at variations in the background shear current and diverse forms of inertial oscillations measured at a fixed point at various values of the shear current are revealed. The relation between the passage of the multidirectional jets and the trains of inertial oscillations inside the jets in the studied region are established.  相似文献   

8.
The annual course of sea level at various sections of the coastline is derived from the interpretation of empirical observations. The paper evaluates the effect of continental discharge, atmospheric pressure, and density distribution upon the local sea level vacillations, and the tendency to multi-annual sea level variability is determined. During this century, against the background of broad spectral oscillations, the Black Sea mean level is rising at the rate of 1.6 mm year−1. The paper examines Man's impact upon the erosion of the shore and the departure of the coastline. Translated by Vladimir A. Puchkin.  相似文献   

9.
A new heat flow map has been compiled for the Black Sea. Marine segments of interregional deep faults and marine regional deep faults have been traced in detail in the northern Black Sea. Gas seeps are situated in zones of deep faults. The potential role of these faults in the formation of gas leakage is evaluated. For the first time the spatial fault coincidence with gas release is clearly interpreted as being directly interrelated. As the gas is largely of deep origin, the seeps may be indicators of subsurface hydrocarbon accumulation.  相似文献   

10.
The results of simulating the hydrophysical fields of the Black Sea with a resolution of 1.64 × 1.64 km for January–September 2006 with the use of real atmospheric forcing are analyzed. Both vertical turbulent momentum exchange and vertical turbulent heat and salt diffusions are parameterized using the Mellor-Yamada level 2.5 scheme. The results of this numerical experiment are compared with similar data obtained with a horizontal resolution of 5 km. The features of the meso- and submesoscale dynamics of waters in individual sea regions are given. Possible physical mechanisms of forming meso- and submesoscale vortices are studied on the basis of energy analysis. It is shown that, in the absence of significant wind forcing, the main contribution to kinetic energy is made by the buoyancy force and wind-field inhomogeneities result in significant variations in both total vertical viscosity and total vertical diffusion.  相似文献   

11.
Seiche oscillations of the Azov Sea level are studied on the basis of the developed two-dimensional numerical hydrodynamic model grounded on the shallow water theory and recent data on the morphometric characteristics of the Sea of Azov. Frequency and spatial characteristics of the first five modes corresponding to seiche oscillations of the Azov Sea level are computed. It is shown that the frequency and spatial characteristics of the first five modes obtained for the Sea of Azov level changes correspond to seiche oscillations. The calculated parameters are compared with the field observations, which show their realistic character.  相似文献   

12.
Oscillations in Otago Harbour, (45° 49’ S, 170° 38’ E) produced by the 1960 Chilean Tsunami are found by spectral analysis to have most of their energy at a period of about 80 min. By numerically integrating a one‐dimensional linear momentum equation and the continuity equation for various sections of the harbour, this period is found to correspond to the quarter wavelength oscillation in the main channel between the mouth of the harbour and the Halfway Islands. The large value of the linear frictional coefficient, calculated from the phase of the tide in the harbour, and the resulting excessive damping, indicates why long period non‐tidal oscillations are generally not found in the harbour.  相似文献   

13.
南海北部是南海向陆地过渡的前锋关键地带和全球变化的敏感地区之一,受海平面变化的影响,该地区海平面标志物广泛发育,是开展过去海平面变化研究的理想区域。目前关于南海北部全新世海平面变化历史的认识依然存在一定分歧。基于此,通过新增6个珊瑚礁数据,并对南海北部已发表的海平面数据进行年代和高程校正,然后进行相互验证和可靠性分析。同时对监测记录较为连续的12个验潮站的现代海平面观测资料进行整理和进一步验证重建结果的可靠性。最后,根据汇编的679个校正和可靠性评估后的海平面数据,重建了南海北部全新世以来,尤其是最近2 000 a的海平面变化历史和变化特征。校正和评估后的数据显示:南海北部海平面从早全新世(8 211 ±128)cal a BP的−16.16 m快速上升到6 000~7 000 cal a BP的1.5 ~ 2.5 m,之后波动下降到现今海平面高度。其中在中全新世海平面保持高位震荡约2 600 a,而晚全新世南海北部过去2 000 a海平面整体呈现出阶段变化过程。首先,在公元0—350年呈下降趋势,然后在公元350—850年海平面快速上升,并在公元880年,海平面处于过去2 000 a的最高点(1.05±0.35)m,随后海平面继续下降至公元1850年的(−0.18±0.05) m。之后半个世纪保持水平窄幅波动,直到公元1897年(−0.19 ± 0.05)m后,海平面持续震荡逐渐上升至公元2020年的0.076 m。若以过去百年(公元1925—2020年)和40 a(公元1980—2020年)上升速度(分别为2.35 mm/a和3.55 mm/a)估算,公元2100年南海北部海平面将比现今海平面高0.19~0.28 m。因此,在南海北部沿海低洼地区开展大型工程建设时,需要考虑未来海平面上升因素带来的不利影响。此外,分析发现,基于不同海平面标志物和采用不同重建方法是南海北部全新世以来海平面重建结果区域差异的主要原因。总体上,南海北部中全新世以来海平面呈现出波动下降的趋势。尽管不同地区海平面在时间与高度上存有差异,但是南海北部地区与周边海岸的海平面记录一致,这说明中全新世南海北部高海平面与南海周边地区基本同步,极可能具有全球背景。  相似文献   

14.
渤海及黄海北部冰情长期变化趋势分析   总被引:2,自引:0,他引:2  
统计分析上世纪50年代—2010年渤海及黄海北部海冰资料,对其年代际变化特征进行分析。上世纪50年代—90年代冰情总体呈缓解的趋势,2000年以来冰情略有加重。研究发现太阳活动与渤海及黄海北部冰情变化关系密切,太阳活动可能是渤海及黄海北部冰情长期变化重要影响因素。如果太阳黑子的周期长度比上一个周期长,那么周期内冰情较上一个周期严重。反之亦然。  相似文献   

15.
The Black Sea shelf is a region of intense manifestation of various dynamical processes. Under the influence of different natural forces, eddy-wave phenomena develop here, which influence the general circulation of sea waters, biological productivity, and the condition of the engineering structures. Modern numerical models allow us to simulate and analyze the processes of the joint dynamics of marine circulation and large-scale waves. In this work, we study the spatiotemporal spectral characteristics of the sea level and velocity fluctuations formed due to atmospheric forcing and tidal potential. The hydrophysical fields are calculated using the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), σ model based on primitive equations. We use the CORE data as atmospheric forcing at the sea surface; the tidal potential is described by the semidiurnal lunar constituent M2. Analyzing the simulation results makes it possible to emphasize that accounting for the semidiurnal tidal potential not only improves the accuracy of the sea-level calculation at coastal stations, but also generates subinertial baroclinic oscillations previously found in the Black Sea from the data of in situ observations.  相似文献   

16.
With observational data from three Acoustic Doppler Current Profiler (ADCP) moorings, we detected strong near-inertial oscillations (NIO) in the continental shelf region of the northern South China Sea in July 2008. The amplitude of the near-inertial current velocity is much greater than that of diurnal and semi-diurnal tides. The power of the NIOs is strongest in the intermediate layer, relatively weak in the surface layer, and insignificant in the near-bottom layer. The spectral analysis indicates that the NIOs have a peak frequency of 0.0307 cph, which is 2% lower than the local inertial frequency, i.e., a red-shift. The near-inertial wave has an upward vertical phase velocity, which involves a downward group velocity and energy flux. The estimated vertical phase velocity is about 43 m day−1, corresponding to a vertical wave length of about 58 m. The horizontal scale of the NIOs is at least hundreds of kilometers. This NIO event lasted for about 15 days after a typhoon’s passage. Given the northeastward background flow with significant horizontal shear, both Doppler shift and shear flow modulation mechanisms may be responsible for the red-shift of the observed NIOs. For the shear flow mechanism, the observed negative background vorticity and the corresponding effective Coriolis frequency reduce the lower limit of admissible frequency band for the NIOs, causing the red-shift. Meanwhile, the mooring area with the broadened frequency band acts as a wave-guide. The trapping and amplification effects lead to the relatively long sustaining period of the observed NIOs.  相似文献   

17.
The data collected during an 18-day station and nine hydrologic surveys have been analysed. Mesoscale and large-scale temperature and salinity oscillations were revealed. Mesoscale oscillations in the sea surface layer are induced by the diurnal course of solar radiation, and in the seasonal thermocline layer by internal waves with a predominant 6–10 h periodicity. Large-scale fluctuations are related to the passage of clockwise (cold) and anticlockwise (warm) meanders and vortices. It has been determined that the contribution of large-scale temperature and salinity oscillations to the total variability is 1·5 to 3-fold larger than that of the mesoscale ones.Translated by Vladimir A. Puchkin.  相似文献   

18.
The continental slope in the northern South China Sea(SCS) is rich in mesoscale eddies which play an important role in transport and retention of nutrients and biota. In this study, we investigate the statistical properties of eddy distributions and propagation in a period of 24 years between 1993 and 2016 by using the altimeter data. A total of 147 eddies are found in the continental slope region(CSR), including 70 cyclonic eddies(CEs) and 77 anticyclonic eddies(ACEs). For those eddies that appear in the CSR, the surrounding areas of Dongsha Islands(DS) and southwest of Taiwan(SWT) are considered as the primary sources, where eddies generated contribute more than 60% of the total. According to the spatial distribution of eddy relative vorticity, eddies are weakening as propagating westward. Although both CEs and ACEs roughly propagate along the slope isobaths, there are discrepancies between CEs and ACEs. The ACEs move slightly faster in the zonal direction, while the CEs tend to cross the isobaths with large bottom depth change. The ACEs generally move further into the basin areas after leaving the CSR while CEs remain around the CSR. The eddy propagation on the continental slope is likely to be associated with mean flow at a certain degree because the eddy trajectories have notable seasonal signals that are consistent with the seasonal cycle of geostrophic current. The results indicate that the eddy translation speed is statistically consistent with geostrophic velocity in both magnitude and direction.  相似文献   

19.
A method for combined assimilation of climatic hydrologic fields of temperature, salinity, and the climatic dynamic level of the Black Sea into a model of sea dynamics is proposed. The monthly mean fields of the dynamic sea level were obtained from the results of assimilation of satellite altimetry data into the model. The statistical characteristics of errors in the forecasts of the level, salinity, and temperature were assumed to be proportional to the statistical characteristics of the differences between monthly mean climatic fields of temperature, salinity, and sea level calculated by means of assimilating altimetry observations of the sea level and analogous climatic hydrologic fields. The climatic fields of currents are reconstructed and analyzed. The assimilation of the climatic altimetry level allows the reproduction (in current fields) of quasi-stationary synoptic anticyclonic eddies located along the periphery of the Black Sea Rim Current.  相似文献   

20.
南海北部海域是南海中尺度涡的高发区,该海区的多尺度动力过程及相互作用经常对海上工程安全造成重大影响。针对“FPSO-119”海洋工程施工船在2021年5月8日20时左右遇到“怪流”后瞬时大幅度失位现象,在排除内波等其他海洋现象与外因影响的前提下,利用海表面高度异常(SLA)数据、HYCOM模式数据以及现场实测数据,分析认为“怪流”是施工海域内中尺度涡与潮流正向叠加所导致。在此基础上,结合TPXO潮流预报数据,提出了一种将中尺度涡流与潮流矢量叠加的涡流预报方法,并通过FVCOM数值预报,对施工海域的中尺度涡流进行预报。经过与现场实测数据的后报检验,该方法能够反映施工海域内涡流在未来2 d内的主要运动特征,可作为海上工程应对“怪流”的重要参考,在工程应用中结合内波流、风海流等其他信息综合考虑分析,可更好地为海洋工程和船舶航行等提供安全保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号